IODP Proceedings    Volume contents     Search



Adams, C.G., 1967. Tertiary foraminifera in the Tethyan, American and Indo-Pacific provinces. In Adams, C.G., and Ager, D.V. (Eds.), Aspects of Tethyan Biogeography: A Symposium: London (Systematics Association), 7:195–217.

Adams, C.G., 1983. Speciation, phylogenesis, tectonism, climate and eustasy: factors in the evolution of Cenozoic large foraminiferal bioprovinces. In Sims, R.W., Price, J.H., and Whalley, P.E.S. (Eds.), Evolution, Time and Space: Emergence of the Biosphere. Syst. Assoc. Spec. Vol. Ser., 23:255–289.

Allègre, C.J., Staudacher, T., Sarda, P., and Kurz, M., 1983. Constraints on evolution of Earth’s mantle from rare gas systematics. Nature (London, U. K.), 303(5920):762–766. doi:10.1038/303762a0

Alt, J.C., and Teagle, D.A.H., 1999. The uptake of carbon during alteration of ocean crust. Geochim. Cosmochim. Acta, 63(10):1527–1535. doi:10.1016/S0016-7037(99)00123-4

Alt, J.C., and Teagle, D.A.H., 2003. Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801. Chem. Geol., 201(3–4):191–211. doi:10.1016/S0009-2541(03)00201-8

Antretter, M., Riisager, P., Hall, S., Zhao, X., and Steinberger, B., 2004. Modeled palaeolatitudes for the Louisville hot spot and the Ontong Java Plateau. In Fitton, J.G., Mahoney, J.J., Wallace, P.J., and Saunders, A.D. (Eds.), Origin and Evolution of the Ontong Java Plateau. Geol. Soc. Spec. Publ., 229(1):21–30. doi:10.1144/GSL.SP.2004.229.01.03

Antretter, M., Steinberger, B., Heider, F., and Soffel, H., 2002. Paleolatitudes of the Kerguelen hotspot: new paleomagnetic results and dynamic modeling. Earth Planet. Sci. Lett., 203(2):635–650. doi:10.1016/S0012-821X(02)00841-5

Bach, W., Peucker-Ehrenbrink, B., Hart, S.R., and Blusztajn, J.S., 2003. Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B—implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle. Geochem., Geophys., Geosyst., 4(3):8904–8932. doi:10.1029/2002GC000419

Barrera, E., and Savin, S.M., 1999. Evolution of Campanian–Maastrichtian marine climates and oceans. In Barrera, E., and Johnson, C.C. (Eds.), Evolution of the Cretaceous Ocean-Climate System. Spec. Pap.—Geol. Soc. Am., 332:245–282. doi:10.1130/0-8137-2332-9.245

Bartetzko, A., Paulick, H., Iturrino, G., and Arnold, J., 2003. Facies reconstruction of a hydrothermally altered dacite extrusive sequence: evidence from geophysical downhole logging data (ODP Leg 193). Geochem., Geophys., Geosyst., 4(10):1087–1110. doi:10.1029/2003GC000575

Beier, C., Vanderkluysen, L., Regelous, M., Mahoney, J.J., and Garbe-Schönberg, D., 2011. Lithospheric control on geochemical composition along the Louisville Seamount Chain. Geochem., Geophys., Geosyst., 12:Q0AM01. doi:10.1029/2011GC003690

Besse, J., and Courtillot, V., 1991. Revised and synthetic apparent polar wander paths of African, Eurasian, North American and Indian plates, and true polar wander since 200 Ma. J. Geophys. Res., [Solid Earth], 96(B3):4029–4051. doi:10.1029/90JB01916

Besse, J., and Courtillot, V., 2002. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. J. Geophys. Res. [Solid Earth], 107(B11):2300–2330. doi:10.1029/2000JB000050

Brandon, A.D., Norman, M.D., Walker, R.J., and Morgan, J.W., 1999. 186Os–187Os systematics of Hawaiian picrites. Earth Planet. Sci. Lett., 174(1–2):25–42. doi:10.1016/S0012-821X(99)00251-4

Butler, R.F., 1992. Paleomagnetism: Magnetic Domains to Geologic Terranes: Boston (Blackwell).

Cande, S.C., and Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res., [Solid Earth], 100(B4):6093–6095. doi:10.1029/94JB03098

Cande, S.C., Raymond, C.A., Stock, J., and Haxby, W.F., 1995. Geophysics of the Pitman Fracture Zone and Pacific-Antarctic plate motions during the Cenozoic. Science, 270(5238):947–953. doi:10.1126/science.270.5238.947

Cheng, Q., Park, K.-H., Macdougal, J.D., Zindler, A., Lugmair, G.W., Hawkins, J., Lonsdale, P., and Staudigel, H., 1987. Isotopic evidence for a hot spot origin of the Louisville Seamount Chain. In Keating, B.H., Fryer, P., Batiza, R., and Boehlert, G. (Eds.), Seamounts, Islands and Atolls. Geophys. Monogr., 43:283–296.

Clague, D.A., and Dalrymple, G.B., 1988. Age and petrology of alkalic postshield and rejuvenated-stage lava from Kauai, Hawaii. Contrib. Mineral. Petrol., 99(2):202–218. doi:10.1007/BF00371461

Clouard, V., and Bonneville, A., 2001. How many Pacific hotspots are fed by deep-mantle plumes? Geology, 29(8):695–698. doi:10.1130/0091-7613(2001)029<0695:HMPHAF>2.0.CO;2

Constable, C., and Johnson, C., 2005. A paleomagnetic power spectrum. Phys. Earth Planet. Int., 153(1–3):61–73. doi:10.1016/j.pepi.2005.03.015

Contreras-Reyes, E., Grevemeyer, I., Watts, A.B., Planert, L., Flueh, E.R., and Peirce, C., 2010. Crustal intrusion beneath the Louisville hotspot track. Earth Planet. Sci. Lett., 289(3–4):323–333. doi:10.1016/j.epsl.2009.11.020

Corfield, R.M., and Cartlidge, J.E., 1992. Oceanographic and climatic implications of the Paleocene carbon isotope maximum. Terra Nova, 4(4):443–455. doi:10.1111/j.1365-3121.1992.tb00579.x

Corfield, R.M., and Norris, R.D., 1996. Deep water circulation in the Paleogene Ocean. In Knox, R.W., Corfield, R.M., and Dunay, R.E. (Eds.), Correlation of the Early Paleogene in Northwest Europe. Geol. Soc. Spec. Publ., 101(1):443–456. doi:10.1144/GSL.SP.1996.101.01.21

Courtier, A.M., Jackson, M.G., Lawrence, J.F., Wang, Z., Lee, C.-T.A., Halama, R., Warren, J.M., Workman, R., Xu, W., Hirschmann, M.M., Larson, A.M., Hart, S.R., Lithgow-Bertelloni, C., Stixrude, L., and Chen, W.-P., 2007. Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots. Earth Planet. Sci. Lett., 264(1–2):308–316. doi:10.1016/j.epsl.2007.10.003

Courtillot, V., Davaille, A., Besse, J., and Stock, J., 2003. Three distinct types of hotspots in Earth’s mantle. Earth Planet. Sci. Lett., 205(3–4):295–308. doi:10.1016/S0012-821X(02)01048-8

Cowen, J.P., Giovannoni, S.J., Kenig, F., Johnson, H.P., Butterfield, D., Rappé, M.S., Hutnak, M., and Lam, P., 2003. Fluids from aging ocean crust that support microbial life. Science, 299(5603):120–123. doi:10.1126/science.1075653

Danyushevsky, L.V., Sokolov, S., and Falloon, T.J., 2002. Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks. J. Petrol., 43(9):1651–1671. doi:10.1093/petrology/43.9.1651

Davaille, A., Girard, F., and Le Bars, M., 2002. How to anchor hotspots in a convecting mantle? Earth Planet. Sci. Lett., 203(2):621–634. doi:10.1016/S0012-821X(02)00897-X

Davies, D.R., and Davies, J.H., 2009. Thermally driven mantle plumes reconcile multiple hotspot observations. Earth Planet. Sci. Lett., 278(1–2):50–54. doi:10.1016/j.epsl.2008.11.027

Devey, C.W., Lackschewitz, K.S., Mertz, D.F., Bourdon, B., Cheminée, J.-L., Dubois, J., Guivel, C., Hékinian, R., and Stoffers, P., 2003. Giving birth to hotspot volcanoes: distribution and composition of young seamounts from the seafloor near Tahiti and Pitcairn islands. Geology, 31(5):395–398. doi:10.1130/0091-7613(2003)031<0395:GBTHVD>2.0.CO;2

DiVenere, V., and Kent, D.V., 1999. Are the Pacific and Indo–Atlantic hotspots fixed? Testing the plate circuit through Antarctica. Earth Planet. Sci. Lett., 170(1–2):105–117. doi:10.1016/S0012-821X(99)00096-5

Doubrovine, P.V., and Tarduno, J.A., 2008a. A revised kinematic model for the relative motion between Pacific oceanic plates and North America since the Late Cretaceous. J. Geophys Res., [Solid Earth], 113(B12):B12101–B12120. doi:10.1029/2008JB005585

Doubrovine, P.V., and Tarduno, J.A., 2008b. Linking the Late Cretaceous to Paleogene Pacific plate and the Atlantic bordering continents using plate circuits and paleomagnetic data. J. Geophys Res., [Solid Earth], 113(B7):B07104–B07127. doi:10.1029/2008JB005584

Downey, N.J., Stock, J.M., Clayton, R.W., and Cande, S.C., 2007. History of the Cretaceous Osbourn spreading center. J. Geophys. Res., [Solid Earth], 112(B4):B04102–B04119. doi:10.1029/2006JB004550

Duncan, R., Arndt, N., Hanyu, T., Harada, Y., Harpp, K., Hoernle, K., Kellogg, L., Kent, D., Koppers, A., Sager, W., Steinberger, B., Tarduno, J., and Xu, Y.-G., 2007. Report from the Hotspot Geodynamics Detailed Planning Group [from Hotspot Geodynamics Detailed Planning Group Meeting, University of Hawaii, Manoa, 12 and 13 January 2007].

Duncan, R.A., and Keller, R.A., 2004. Radiometric ages for basement rocks from the Emperor Seamounts, ODP Leg 197. Geochem., Geophys., Geosyst., 5(8):Q08L03–Q08L15. doi:10.1029/2004GC000704

Duncan, R.A., Tarduno, J.A., and Scholl, D.W., 2006. Leg 197 synthesis: southward motion and geochemical variability of the Hawaiian hotspot. In Duncan, R.A., Tarduno, J.A., Davies, T.A., and Scholl, D.W. (Eds.), Proc. ODP, Sci. Results, 197: College Station, TX (Ocean Drilling Program), 1–39. doi:10.2973/

Eickmann, B., Bach, W., and Peckmann, J., 2009. Authigenesis of carbonate minerals in modern and Devonian ocean-floor hard rocks. J. Geol., 117(3):307–323. doi:10.1086/597362

Ellam, R.M., 1992. Lithospheric thickness as a control on basalt geochemistry. Geology, 20(2):153–156. doi:10.1130/0091-7613(1992)020<0153:LTAACO>2.3.CO;2

Epp, D., 1978. Relationships between plate/plate and plate/mantle motion in the Pacific. Eos, Trans. Am. Geophys. Union, 59(12):1203.

Farley, K.A., and Neroda, E., 1998. Noble gases in the Earth’s mantle. Annu. Rev. Earth Planet. Sci., 26(1):189–218. doi:10.1146/

Fisk, M.R., Giovannoni, S.J., and Thorseth, I.H., 1998. Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science, 281(5379):978–980. doi:10.1126/science.281.5379.978

Foulger, G.R., and Anderson, D.L., 2005. A cool model for the Iceland hotspot. J. Volcanol. Geotherm. Res., 141(1–2):1–22. doi:10.1016/j.jvolgeores.2004.10.007

Frezzotti, M.-L., 2001. Silicate-melt inclusions in magmatic rocks: applications to petrology. Lithos, 55(1–4):273–299. doi:10.1016/S0024-4937(00)00048-7

Furnes, H., Staudigel, H., Thorseth, I.H., Torsvik, T., Muehlenbachs, K., and Tumyr, O., 2001. Bioalteration of basaltic glass in the oceanic crust. Geochem., Geophys., Geosyst., 2(8):1049–1078. doi:10.1029/2000GC000150

Gaillot, P., Einaudi, F., Stoll, J., and Leven, M., 2004. General-purpose inclinometry modules in highly magnetized formations: are borehole wall microresistivity images properly oriented? In Duncan, R.A., Tarduno, J.A., Davies, T.A., and Scholl, D.W. (Eds.), Proc. ODP, Sci. Results, 197: College Station, TX (Ocean Drilling Program), 1–22. doi:10.2973/

Goldreich, P., and Toomre, A., 1969. Some remarks on polar wandering. J. Geophys. Res., [Solid Earth], 74(10):2555–2567. doi:10.1029/JB074i010p02555

Gordon, R.G., 1987. Polar wandering and paleomagnetism. Annu. Rev. Earth Planet. Sci., 15:567–593. doi:10.1146/annurev.ea.15.050187.003031

Graham, D.W., 2002. Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: characterization of mantle source reservoirs. In Porcelli, D., Wieler, R., and Ballentine, C. (Eds.), Noble Gases in Geochemistry and Cosmochemistry. Rev. Mineral. Geochem., 47(1):247–317. doi:10.2138/rmg.2002.47.8

Grevemeyer, I., and Flüh, E.R., 2008. Cruise Report SO195: Tonga Thrust earthquake asperity at Louisville Ridge. IFM-GEOMR Rep., 14.

Hauri, E., 2002. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chem. Geol., 183(1–4):115–141. doi:10.1016/S0009-2541(01)00374-6

Hawkins, J.W., Lonsdale, P., and Batiza, R., 1987. Petrologic evolution of the Louisville Seamount Chain. In Keating, B.H., Fryer, P., Batiza, R., and Boehlert, G.W. (Eds.), Seamounts, Islands, and Atolls. Geophys. Monogr., 43:235–254.

Hoernle, K., Werner, R., Phipps Morgan, J., Garbe-Schönberg, D., Bryce, J., and Mrazek, J., 2000. Existence of complex spatial zonation in the Galápagos plume. Geology, 28(5):435–438. doi:10.1130/0091-7613(2000)028<0435:EOCSZI>2.3.CO;2

Huber, B.T., Hodell, D.A., and Hamilton, C.P., 1995. Middle–Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol. Soc. Am. Bull., 107(10):1164–1191. doi:10.1130/0016-7606(1995)107<1164:MLCCOT>2.3.CO;2

Inagaki, F., Nunoura, T., Nakagawa, S., Teske, A., Lever, M., Lauer, A., Suzuki, M., Takai, K., Delwiche, M., Colwell, F.S., Nealson, K.H., Horikoshi, K., D’Hondt, S., and Jørgensen, B.B., 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean margin. Proc. Natl. Acad. Sci. U. S. A., 103(8):2815–2820. doi:10.1073/pnas.0511033103

Inokuchi, H., and Heider, F., 1992. Paleolatitude of the southern Kerguelen Plateau inferred from the paleomagnetic study of Late Cretaceous basalts. In Wise, S.W., Jr., Schlich, R., et al., Proc. ODP, Sci. Results, 120: College Station, TX (Ocean Drilling Program), 89–96. doi:10.2973/

Ito, G., and Mahoney, J.J., 2005. Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts. Earth Planet. Sci. Lett., 230(1–2):29–46. doi:10.1016/j.epsl.2004.10.035

Ito, H., Nogi, Y., and Larson, R.L., 1995. Magnetic reversal stratigraphy of Jurassic oceanic crust from Hole 801C downhole magnetometer measurements. In Haggerty, J.A., Premoli Silva, I., Rack, F., and McNutt, M.K. (Eds.), Proc. ODP, Sci. Results, 144: College Station, TX (Ocean Drilling Program), 641–647. doi:10.2973/

Ivarsson, M., Lindblom, S., Broman, C., and Holm, N.G., 2008. Fossilized microorganisms associated with zeolite–carbonate interfaces in sub-seafloor hydrothermal environments. Geobiology, 6(2):155–170. doi:10.1111/j.1472-4669.2007.00139.x

Jenkyns, H.C., and Wilson, P.A., 1999. Stratigraphy, palaeoceanography, and evolution of Cretaceous Pacific guyots: relics from a greenhouse Earth. Am. J. Sci., 299(5):341–392. doi:10.2475/ajs.299.5.341

Keller, R.A., Graham, D.W., Farley, K.A., Duncan, R.A., and Lupton, J.E., 2004. Cretaceous-to-recent record of elevated 3He/4He along the Hawaiian–Emperor volcanic chain. Geochem., Geophys., Geosyst., 5(12):Q12L05–Q12L14. doi:10.1029/2004GC000739

Kent, A.J.R., 2008. Melt inclusions in basaltic and related volcanic rocks. Rev. Mineral. Geochem., 69(1):273–331. doi:10.2138/rmg.2008.69.8

Kerr, B.C., Scholl, D.W., and Klemperer, S.L., 2006. Data report: seismic reflection surveys of the Emperor Seamounts: ODP Leg 197. In Duncan, R.A., Tarduno, J.A., Davies, T.A., and Scholl, D.W. (Eds.), Proc. ODP, Sci. Results, 197: College Station, TX (Ocean Drilling Program), 1–17. doi:10.2973/

Klootwijk, C.T., Gee, J.S., Peirce, J.W., and Smith, G.M., 1991. Constraints on the India-Asia convergence: paleomagnetic results from Ninetyeast Ridge. In Weissel, J., Peirce, J., Taylor, E., Alt, J., et al., Proc. ODP, Sci. Results, 121: College Station, TX (Ocean Drilling Program), 777–882. doi:10.2973/

Kono, M., 1980. Magnetic properties of DSDP Leg 55 basalts. In Jackson, E.D., Koizumi, I., et al., Init. Repts. DSDP, 55: Washington, DC (U.S. Govt. Printing Office), 723–736. doi:10.2973/dsdp.proc.55.134.1980

Koppers, A.A.P., Duncan, R.A., and Steinberger, B., 2004. Implications of a nonlinear 40Ar/39Ar age progression along the Louisville Seamount Trail for models of fixed and moving hot spots. Geochem., Geophys., Geosyst., 5(6):Q06L02–Q06L23. doi:10.1029/2003GC000671

Koppers, A.A.P., Gowen, M.D., Colwell, L.E., Gee, J.S., Lonsdale, P.F., Mahoney, J.J., and Duncan, R.A., 2011. New 40Ar/39Ar age progression for the Louisville hotspot trail and implications for inter-hotspot motion. Geochem., Geophys., Geosyst., 12:Q0AM02. doi:10.1029/2011GC003804

Koppers, A.A.P., Phipps Morgan, J., Morgan, J.W., and Staudigel, H., 2001. Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth Planet. Sci. Lett., 185(3–4):237–252. doi:10.1016/S0012-821X(00)00387-3

Koppers, A.A.P., Staudigel, H., Pringle, M.S., and Wijbrans, J.R., 2003. Short-lived and discontinuous intraplate volcanism in the South Pacific: hot spots or extensional volcanism? Geochem., Geophys., Geosyst., 4(10):1089–1137. doi:10.1029/2003GC000533

Koppers, A.A.P., Staudigel, H., and Wijbrans, J.R., 2000. Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the 40Ar/39Ar incremental heating technique. Chem. Geol., 166(1–2):139–158. doi:10.1016/S0009-2541(99)00188-6

Koppers, A.A.P., Yamazaki, T., and Geldmacher, J., 2010. Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots. IODP Sci. Prosp., 330. doi:10.2204/iodp.sp.330.2010

Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., and the IUGS Subcommission on the Systematics of Igneous Rocks, 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol., 27(3):745–750.

Lindle, M.E., Colwell, L.E., Koppers, A.A., and Duncan, R.A., 2008. Evidence for differential Hawaiian and Louisville plume motions based on 40Ar/39Ar geochronology. Eos, Trans. Am. Geophys. Union, 89(53):0S41E-1263. (Abstract)

Lonsdale, P., 1988. Geography and history of the Louisville hotspot chain in the Southwest Pacific. J. Geophys. Res., [Solid Earth], 93(B4):3078–3104. doi:10.1029/JB093iB04p03078

Lowman, J.P., King, S.D., and Gable, C.W., 2004. Steady plumes in viscously stratified, vigorously convecting, three-dimensional numerical mantle convection models with mobile plates. Geochem., Geophys., Geosyst., 5(1):Q01L01. doi:10.1029/2003GC000583

Lyons, S.N., Sandwell, D.T., and Smith, W.H.F., 2000. Three-dimensional estimation of elastic thickness under the Louisville Ridge. J. Geophys. Res., [Solid Earth], 105(B6):13239–13252. doi:10.1029/2000JB900065

Macdonald, G.A., and Katsura, T., 1964. Chemical composition of Hawaiian lavas. J. Petrol., 5(1):82–133.

Mahoney, J.J., Frei, R., Tejada, M.L.G., Mo, X.X., Leat, P.T., and Nägler, T.F., 1998. Tracing the Indian Ocean Mantle domain through time: isotopic results from old west Indian, east Tethyan and South Pacific seafloor. J. Petrol., 39(7):1285–1306.

Mahoney, J.J., and Spencer, K.J., 1991. Isotopic evidence for the origin of the Manihiki and Ontong Java oceanic plateaus. Earth Planet. Sci. Lett., 104(2–4):196–210. doi:10.1016/0012-821X(91)90204-U

Mahoney, J.J., Storey, M., Duncan, R.A., Spencer, K.J., and Pringle, M.S., 1993. Geochemistry and age of the Ontong Java Plateau. In Pringle, M.S., Sager, W.W., Sliter, W.V., and Stein, S. (Eds.), The Mesozoic Pacific: Geology, Tectonics, and Volcanism. Geophys. Monogr., 77:233–262.

Mason, O.U., Nakagawa, T., Rosner, M., Van Nostrand, J.D., Zhou, J., Maruyama, A., Fisk, M.R., and Giovannoni, S.J., 2010. First investigation of the microbiology of the deepest layer of ocean crust. PLoS One, 5(11):e15399. doi:10.1371/journal.pone.0015399

Mayer, H., and Tarduno, J.A., 1993. Paleomagnetic investigation of the igneous sequence, Site 807, Ontong Java Plateau, and a discussion of Pacific true polar wander. In Berger, W.H., Kroenke, L.W., Mayer, L.A., et al., Proc. ODP, Sci. Results, 130: College Station, TX (Ocean Drilling Program), 51–59. doi:10.2973/

McElhinny, M.W., and McFadden, P.L., 1997. Palaeosecular variation over the past 5 Myr based on a new generalized database. Geophys. J. Int., 131(2):240–252. doi:10.1111/j.1365-246X.1997.tb01219.x

McKenzie, D., and Bickle, M.J., 1988. The volume and composition of melt generated by extension of the lithosphere. J. Petrol., 29(3):625–679.

Meibom, A., Anderson, D.L., Sleep, N.H., Frei, R., Chamberlain, C.P., Hren, M.T., and Wooden, J.L., 2003. Are high 3He/4He ratios in oceanic basalts an indicator of deep-mantle plume components? Earth Planet. Sci. Lett., 208(3–4):197–204. doi:10.1016/S0012-821X(03)00038-4

Morgan, W.J., 1971. Convection plumes in the lower mantle. Nature (London, U. K.), 230(5288):42–43. doi:10.1038/230042a0

Mortimer, N., Hoernle, K., Hauff, F., Palin, J.M., Dunlap, W.J., Werner, R., and Faure, K., 2006. New constraints on the age and evolution of the Wishbone Ridge, southwest Pacific Cretaceous microplates, and Zealandia–West Antarctica breakup. Geology, 34(3):185–188. doi:10.1130/G22168.1

Müller, R.D., Sdrolias, M., Gaina, C., and Roest, W.R., 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem., Geophys., Geosyst., 9(4):Q04006–Q04024. doi:10.1029/2007GC001743

Nakanishi, M., and Gee, J.S., 1995. Paleomagnetic investigations of volcanic rocks: paleolatitudes of the northwestern Pacific guyots. In Haggerty, J.A., Premoli Silva, I., Rack, F., and McNutt, M.K. (Eds.), Proc. ODP, Sci. Results, 144: College Station, TX (Ocean Drilling Program), 585–604. doi:10.2973/

Niu, Y., Regelous, M., Wendt, I.J., Batiza, R., and O’Hara, M.J., 2002. Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component. Earth Planet. Sci. Lett., 199(3–4):327–345. doi:10.1016/S0012-821X(02)00591-5

Norris, R.D., Klaus, A., and Kroon, D., 2001. Mid-Eocene deep water, the Late Palaeocene Thermal Maximum and continental slope mass wasting during the Cretaceous–Palaeogene impact. In Kroon, D., Norris, R.D., and Klaus, A. (Eds.), Western North Atlantic Paleogene and Cretaceous Paleoceanography. Geol. Soc. Spec. Publ., 183(1):23–48. doi:10.1144/GSL.SP.2001.183.01.02

O’Connor, J.M., Regelous, M., Koppers, A.A.P., Wijbrans, J.R., Haase, K., Stoffers, P., Steinberger, B., and Mahoney, J.J., submitted. Past mantle and plate motion from hotspot trails and bends, 1. A combination of age progressive and secondary volcanism in the Louisville Seamount Chain. Earth Planet. Sci. Lett.

O’Nions, R.K., 1987. Relationships between chemical and convective layering in the Earth. J. Geol. Soc. (London, U. K.), 144(2):259–274. doi:10.1144/gsjgs.144.2.0259

Parker, R.L., 1991. A theory of ideal bodies for seamount magnetization. J. Geophys. Res., [Solid Earth], 96(B10):16101–16112. doi:10.1029/91JB01497

Parker, R.L., Shure, L., and Hildebrand, J.A., 1987. The application of inverse theory to seamount magnetism. Rev. Geophys., 25(1):17–40. doi:10.1029/RG025i001p00017

Parkes, R.J., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochelle, P.A., Fry, J.C., Weightman, A.J., and Harvey, S.M., 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature (London, U. K.), 371(6496):410–413. doi:10.1038/371410a0

Peckmann, J., Bach, W., Behrens, K., and Reitner, J., 2008. Putative cryptoendolithic life in Devonian pillow basalt, Rheinisches Schiefergebirge, Germany. Geobiology, 6(2):125–135. doi:10.1111/j.1472-4669.2007.00131.x

Petronotis, K.E., Gordon, R.G., and Acton, G.D., 1994. A 57 Ma Pacific plate paleomagnetic pole determined from a skewness analysis of crossings of marine magnetic Anomaly 25r. Geophys. J. Int., 118(3):529–554. doi:10.1111/j.1365-246X.1994.tb03983.x

Phipps Morgan, J., and Morgan, W.J., 1999. Two-stage melting and the geochemical evolution of the mantle: a recipe for mantle plum-pudding. Earth Planet. Sci. Lett., 170(3):215–239. doi:10.1016/S0012-821X(99)00114-4

Premoli Silva, I., Nicora, A., Arnaud Vanneau, A., Budd, A.F., Camoin, G.F., and Masse, J.-P., 1995. Paleobiogeographic evolution of shallow-water organisms from the Aptian to the Eocene in the western Pacific. In Haggerty, J.A., Premoli Silva, I., Rack, F., and McNutt, M.K. (Eds.), Proc. ODP, Sci. Results, 144: College Station, TX (Ocean Drilling Program), 887–893. doi:10.2973/

Putirka, K., 2008. Excess temperatures at ocean islands: implications for mantle layering and convection. Geology, 36(4):283–286. doi:10.1130/G24615A.1

Putirka, K.D., Perfit, M., Ryerson, F.J., and Jackson, M.G., 2007. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem. Geol., 241(3–4):177–206. doi:10.1016/j.chemgeo.2007.01.014

Raymond, C.A., Stock, J.M., and Cande, S.C., 2000. Fast Paleogene motion of the Pacific hotspots from revised global plate circuit constraints. In Richards, M.A., Gordon, R.G., and van der Hilst, R.D. (Eds.), The History and Dynamics of Global Plate Motions. Geophys. Monogr., 121:359–375.

Regelous, M., Hofmann, A.W., Abouchami, W., and Galer, S.J.G., 2003. Geochemistry of lavas from the Emperor Seamounts, geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. J. Petrol., 44(1):113–140. doi:10.1093/petrology/44.1.113

Richards, M.A., and Griffiths, R.W., 1989. Thermal entrainment by deflected mantle plumes. Nature (London, U. K.), 342(6252):900–902. doi:10.1038/342900a0

Riisager, P., Hall, S., Antretter, M., and Zhao, X., 2003. Paleomagnetic paleolatitude of Early Cretaceous Ontong Java Plateau basalts: implications for Pacific apparent and true polar wander. Earth Planet. Sci. Lett., 208(3–4):235–252. doi:10.1016/S0012-821X(03)00046-3

Roussel, E.G., Bonavita, M.-A.C., Querellou, J., Cragg, B.A., Webster, G., Prieur, D., and Parkes, R.J., 2008. Extending the subseafloor biosphere. Science, 320(5879):1046. doi:10.1126/science.1154545

Rouxel, O., Ono, S., Alt, J., Rumble, D., and Ludden, J., 2008. Sulfur isotope evidence for microbial sulfate reduction in altered oceanic basalts at ODP Site 801. Earth Planet. Sci. Lett., 268(1–2):110–123. doi:10.1016/j.epsl.2008.01.010

Saal, A.E., Hart, S.R., Shimizu, N., Hauri, E.H., and Layne, G.D., 1998. Pb isotopic variability in melt inclusions from oceanic island basalts, Polynesia. Science, 282(5393):1481–1484. doi:10.1126/science.282.5393.1481

Sager, W.W., and Pringle, M.S., 1987. Paleomagnetic constraints on the origin and evolution of the Musicians and South Hawaiian Seamounts, central Pacific Ocean. In Keating, B.H., Fryer, P., Batiza, R., and Boehlert, G.W. (Eds.), Seamounts, Islands and Atolls. Geophys. Monogr., 43:133–162.

Smith, A.D., 2003. Critical evaluation of Re–Os and Pt–Os isotopic evidence on the origin of intraplate volcanism. J. Geodyn., 36(4):469–484. doi:10.1016/S0264-3707(02)00108-4

Smith, W.H.F., and Sandwell, D.T., 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334):1956–1962. doi:10.1126/science.277.5334.1956

Sobolev, A.V., 1996. Melt inclusions in minerals as a source of principle petrological information. Petrology, 4(3):209–220.

Steinberger, B., 2000. Plumes in a convecting mantle: models and observations for individual hotspots. J. Geophys. Res., [Solid Earth], 105(B5):11127–11152. doi:10.1029/1999JB900398

Steinberger, B., 2002. Motion of the Easter hot spot relative to Hawaii and Louisville hot spots. Geochem., Geophys., Geosyst., 3(11):8503–8529. doi:10.1029/2002GC000334

Steinberger, B., and Antretter, M., 2006. Conduit diameter and buoyant rising speed of mantle plumes: implications for the motion of hot spots and shape of plume conduits. Geochem., Geophys., Geosyst., 7(11):Q11018–Q11042. doi:10.1029/2006GC001409

Steinberger, B., and Calderwood, A., 2006. Models of large-scale viscous flow in the Earth’s mantle with constraints from mineral physics and surface observations. Geophys. J. Int., 167(3):1461–1481. doi:10.1111/j.1365-246X.2006.03131.x

Steinberger, B., and O’Connell, R.J., 1998. Advection of plumes in mantle flow: implications for hotspot motion, mantle viscosity and plume distribution. Geophys. J. Int., 132(2):412–434. doi:10.1046/j.1365-246x.1998.00447.x

Steinberger, B., and O’Connell, R.J., 2000. Effects of mantle flow on hotspot motion. In Richards, M.A., Gordon, R.G., and Van der Hist, R.D. (Eds.), The History and Dynamics of Global Plate Motions. Geophys. Monogr., 121:377–398.

Steinberger, B., Sutherland, R., and O’Connell, R.J., 2004. Prediction of Emperor–Hawaii Seamount locations from a revised model of global plate motion and mantle flow. Nature (London, U. K.), 430(6996):167–173. doi:10.1038/nature02660

Steveling, E., Stoll, J.B., and Leven, M., 2003. Quasi-continuous depth profiles of rock magnetization from magnetic logs in the HSDP-2 borehole, Island of Hawaii. Geochem., Geophys., Geosyst., 4(4):8708–8734. doi:10.1029/2002GC000330

Stoffers, P., 2003. Cruise Report SONNE 167, Louisville Suva–Wellington 12 Oct.–02 Dec. 2002: Kiel (Univ. Kiel, Inst. Geowiss.).

Sun, S.S., and Hanson, G.N., 1976. Rare earth element evidence for differentiation of McMurdo volcanics, Ross Island, Antarctica. Contrib. Mineral. Petrol., 54(2):139–155. doi:10.1007/BF00372120

Tarduno, J., Bunge, H.-P., Sleep, N., and Hansen, U., 2009. The bent Hawaiian-Emperor hotspot track: inheriting the mantle wind. Science, 324(5923):50–53. doi:10.1126/science.1161256

Tarduno, J.A., and Cottrell, R.D., 1997. Paleomagnetic evidence for motion of the Hawaiian hotspot during formation of the Emperor Seamounts. Earth Planet. Sci. Lett., 153(3–4):171–180. doi:10.1016/S0012-821X(97)00169-6

Tarduno, J.A., Duncan, R.A., Scholl, D.W., Cottrell, R.D., Steinberger, B., Thordarson, T., Kerr, B.C., Neal, C.R., Frey, F.A., Torii, M., and Carvallo, C., 2003. The Emperor Seamounts: southward motion of the Hawaiian hotspot plume in Earth’s mantle. Science, 301(5636):1064–1069. doi:10.1126/science.1086442

Tarduno, J.A., Duncan, R.A., Scholl, D.W., et al., 2002. Proc. ODP, Init. Repts., 197: College Station, TX (Ocean Drilling Program). doi:10.2973/

Tarduno, J.A., and Sager, W.W., 1995. Polar standstill of the mid-Cretaceous Pacific plate and its geodynamic implications. Science, 269(5226):956–959. doi:10.1126/science.269.5226.956

Tarduno, J.A., Sliter, W.V., Kroenke, L., Leckie, M., Mayer, H., Mahoney, J.J., Musgrave, R., Storey, M., and Winterer, E.L., 1991. Rapid formation of Ontong Java Plateau by Aptian mantle plume volcanism. Science, 254(5030):399–403. doi:10.1126/science.254.5030.399

Tauxe, L., 2010. Essentials of Paleomagnetism: La Jolla, California (Univ. California Press).

Tauxe, L., and Kent, D.V., 2004. A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: was the ancient magnetic field dipolar? Geophys. Monogr., 145:101–115.

Tejada, M.L.G., Mahoney, J.J., Duncan, R.A., and Hawkins, M.P., 1996. Age and geochemistry of basement and alkalic rocks of Malaita and Santa Isabel, Solomon Islands, southern margin of Ontong Java Plateau. J. Petrol., 37(2):361–394. doi:10.1093/petrology/37.2.361

Thorseth, I.H., Torsvik, T., Furnes, H., and Muehlenbachs, K., 1995. Microbes play an important role in the alteration of oceanic crust. Chem. Geol., 126(2):137–146. doi:10.1016/0009-2541(95)00114-8

Torsvik, T.H., Van der Voo, R., and Redfield, T.F., 2002. Relative hotspot motions versus true polar wander. Earth Planet. Sci. Lett., 202(2):185–200. doi:10.1016/S0012-821X(02)00807-5

Vanderkluysen, L., Mahoney, J.J., Koppers, A.A., and Lonsdale, P.F., 2007. Geochemical evolution of the Louisville Seamount Chain. Eos, Trans. Am. Geophys. Union, 88(52)(Suppl.):V42B-06.

Virgil, C., Hördt, A., Klein, T., Kück, J., Leven, M., and Steveling, E., 2010. High-precision orientation of three-component magnetic downhole logs. Sci. Drill., 9:37–40. doi: 10.2204/

Wallace, P.J., 2005. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res., 140(1–3):217–240. doi:10.1016/j.jvolgeores.2004.07.023

Watts, A.B., Weissel, J.K., Duncan, R.A., and Larson, R.L., 1988. Origin of the Louisville Ridge and its relationship to the Eltanin Fracture Zone. J. Geophys. Res., [Solid Earth], 93(B4):3051–3077. doi:10.1029/JB093iB04p03051

Wessel, P., and Kroenke, L.W., 1997. A geometric technique for relocating hotspots and refining absolute plate motions. Nature (London, U. K.), 387(6631):365–369. doi:10.1038/387365a0

Wessel, P., and Kroenke, L.W., 2009. Observations of geometry and ages constrain relative motion of Hawaii and Louisville plumes. Earth Planet. Sci. Lett., 284(3–4):467–472. doi:10.1016/j.epsl.2009.05.012

Wilson, J.T., 1963. A possible origin of the Hawaiian Islands. Can. J. Phys., 41(6):863–870. doi:10.1139/p63-094

Wilson, P.A., Jenkyns, H.C., Elderfield, H., and Larson, R.L., 1998. The paradox of drowned carbonate platforms and the origin of Cretaceous Pacific guyots. Nature (London, U. K.), 392(6679):889–894. doi:10.1038/31865

Worthington, T.J., Hekinian, R., Stoffers, P., Kuhn, T., and Hauff, F., 2006. Osbourn Trough: structure, geochemistry and implications of a mid-Cretaceous paleospreading ridge in the South Pacific. Earth Planet. Sci. Lett., 245(3–4):685–701. doi:10.1016/j.epsl.2006.03.018