IODP Proceedings    Volume contents     Search

doi:10.2204/iodp.proc.331.103.2011

References

Allen, S.R., Fiske, R.S., and Tamura, Y., 2010. Effects of water depth on pumice formation in submarine domes at Sumisu, Izu-Bonin arc, western Pacific. Geology, 38(5):391–394. doi:10.1130/​G30500.1

Árkai, P., 2002. Phyllosilicates in very low-grade metamorphism: transformation to micas. In Mottana, A., Sassi, F.P., Thompson, J.B., Jr., and Guggenheim, S. (Eds.), Micas: Crystal Chemistry and Metamorphic Petrology. Rev. Mineral. Geochem., 46(1):463–478. doi:10.2138/​rmg.2002.46.11

Bischoff, J.L., and Seyfried, W.E., 1978. Hydrothermal chemistry of seawater from 25°C to 350°C. Am. J. Sci., 278(6):838–860. doi:10.2475/​ajs.278.6.838

Binns, R.A., Barriga, F.J.A.S., and Miller, D.J., 2007. Leg 193 synthesis: anatomy of an active felsic-hosted hydrothermal system, eastern Manus Basin, Papua New Guinea. In Barriga, F.J.A.S., Binns, R.A., Miller, D.J., and Herzig, P.M. (Eds.), Proc. ODP, Sci. Results, 193: College Station, TX (Ocean Drilling Program), 1–17. doi:10.2973/​odp.proc.sr.193.201.2007

Blott, S.J., and Pye, K., 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Processes Landforms, 26(11):1237–1248. doi:10.1002/​esp.261

Browne, P.R.L., 1978. Hydrothermal alteration in active geothermal fields. Annu. Rev. Earth Planet. Sci., 6:229–248. doi:10.1146/​annurev.ea.06.050178.001305

Expedition 331 Scientists, 2011a. Expedition 331 summary. In Takai, K., Mottl, M.J., Nielsen, S.H., and the Expedition 331 Scientists, Proc. IODP, 331: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/​iodp.proc.331.101.2011

Expedition 331 Scientists, 2011b. Methods. In Takai, K., Mottl, M.J., Nielsen, S.H., and the Expedition 331 Scientists, Proc. IODP, 331: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/​iodp.proc.331.102.2011

Folk, R.L., and Ward, W.C., 1957. Brazos River bar [Texas]: a study in the significance of grain size parameters. J. Sediment. Res., 27(1):3–26. http://jsedres.sepmonline.org/​cgi/​content/​abstract/​27/​1/​3

Glasby, G.P., and Notsu, K., 2003. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview. Ore Geol. Rev., 23(3–4):299–339. doi:10.1016/​j.oregeorev.2003.07.001

Haynes, W.M. (Ed.), 2010. CRC Handbook of Chemistry and Physics (91st ed.): Boca Raton, Florida (CRC Press)

Humphris, S.E., Herzig, P.M., Miller, D.J., Alt, J.C., Becker, K., Brown, D., Brügmann, G., Chiba, H., Fouquet, Y., Gemmell, J.B., Guerin, G., Hannington, M.D., Holm, N.G., Honnorez, J.J., Itturino, G.J., Knott, R., Ludwig, R., Nakamura, K., Petersen, S., Reysenbach, A.-L., Rona, P.A., Smith, S., Sturz, A.A., Tivey, M.K., and Zhao, X., 1995. The internal structure of an active sea-floor massive sulphide deposit. Nature (London, U. K.), 377(6551):713–716. doi:10.1038/​377713a0

Hurst, V.J., and Kunkle, A.C., 1985. Dehydroxylation, rehydroxylation, and stability of kaolinite. Clays Clay Miner., 33(1):1–14. doi:10.1346/​CCMN.1985.0330101

Kato, Y., 1987. Woody pumice generated with submarine eruption. Chishitsugaku Zasshi, 93:11–20.

Kawagucci, S., Chiba, H., Ishibashi, J., Yamanaka, T., Toki, T., Muramatsu, Y., Ueno, Y., Makabe, A., Inoue, K., Yoshida, N., Nakagawa, S., Nunoura, T., Takai, K., Takahata, N., Sano, Y., Narita, T., Teranishi, G., Obata, H., and Gamo, T., 2011. Hydrothermal fluid geochemistry at the Iheya north field in the mid-Okinawa Trough: implication for origin of methane in subseafloor fluid circulation systems. Geochem. J., 45(2):109–124. http://www.terrapub.co.jp/​journals/​GJ/​abstract/​4502/​45020109.html

MacDonald, G.J.F., 1953. Anhydrite-gypsum equilibrium relationships. Am. J. Sci., 251(12):884–898. doi:10.2475/​ajs.251.12.884

Marumo, K., and Hattori, K.H., 1999. Seafloor hydrothermal clay alteration at Jade in the back-arc Okinawa Trough: mineralogy, geochemistry, and isotope characteristics. Geochim. Cosmochim. Acta, 63(18):2785–2804. doi:10.1016/​S0016-7037(99)00158-1

Mottl, M.J., 1983. Metabasalts, axial hot springs, and the structure of hydrothermal systems at mid-ocean ridges. Geol. Soc. Am. Bull., 94(2):161–180. doi:10.1130/​0016-7606(1983)94<161:MAHSAT>2.0.CO;2

Seyfried, W.E., Jr., Ding, K., Berndt, M.E., and Chen, X., 1999. Experimental and theoretical controls on the composition of mid-ocean ridge hydrothermal fluids. Rev. Econ. Geol., 8:181–200.

Suzuki, R., Ishibashi, J.-I., Nakaseama, M., Konno, U., Tsunogai, U., Gena, K., and Chiba, H., 2008. Diverse range of mineralization induced by phase separation of hydrothermal fluid: case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough back-arc basin. Resour. Geol., 58(3):267–288. doi:10.1111/​j.1751-3928.2008.00061.x

Takai, K., Mottl, M.J., and Nielson, S.H.H., 2010. Deep hot biosphere. IODP Sci. Prosp., 331. doi:10.2204/​iodp.sp.331.2010

Von Damm, K.L., 1995. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S., and Thomson, R.E. (Eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Geophys. Monogr., 91:222–247.