Addison, J.A., Finney, B.P., Dean, W.E., Davies, M.H., Mix, A.C., and Jaeger, J.M., submitted. Productivity maxima and sedimentary δ15N during the Last Glacial Maximum termination in the Gulf of Alaska. Paleoceanography.

Amit, H., Aubert, J., and Hulot, G., 2010. Stationary, oscillating, or drifting mantle–driven geomagnetic flux patches? J. Geophys. Res., [Solid Earth], 115:B07108–B07121. doi:10.1029/2009JB006542

Andersen, K.K., Svensson, A., Johnsen, S.J., Rasmussen, S.O., Bigler, M., Röthlisberger, R., Ruth, U., Siggaard-Andersen, M.-L., and Steffensen, J.P., 2006. The Greenland ice core chronology 2005, 15–42 ka, Part 1: Constructing the timescale. Quat. Sci. Rev., 25(23–24):3246–3257. doi:10.1016/j.quascirev.2006.08.002

Barker, P.F., Camerlenghi, A., Acton, G.D., et al., 1999. Proc. ODP, Init. Repts., 178: College Station, TX (Ocean Drilling Program). doi:10.2973/

Barker, P.F, Kennett, J.P., et al., 1988. Proc. ODP, Init. Repts., 113: College Station, TX (Ocean Drilling Program). doi:10.2973/

Barron, J.A., Basov, I.A., Beaufort, L., Dubuisson, G., Gladenkov, A.Y., Morley, J.J., Okada, M., Ólafsson, D.K., Pak, D.K., Roberts, A.P., Shilov, V.V., and Weeks, R.J., 1995. Biostratigraphic and magnetostratigraphic summary. In Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), Proc. ODP, Sci. Results, 145: College Station, TX (Ocean Drilling Program), 559–575. doi:10.2973/

Barron, J.A., Bukry, D., Dean, W.E., Addison, J.A., and Finney, B., 2009. Paleoceanography of the Gulf of Alaska during the past 15,000 years: results from diatoms, silicoflagellates, and geochemistry. Mar. Micropaleontol., 72(3–4):176–195. doi:10.1016/j.marmicro.2009.04.006

Barron, J., Larsen, B., et al., 1989. Proc. ODP, Init. Repts., 119: College Station, TX (Ocean Drilling Program). doi:10.2973/

Bartlein, P.J., Anderson, K.H., Anderson, P.M., Edwards, M.E., Mock, C.J., Thompson, R.S., Webb, R.S., Webb, T., III, and Whitlock, C., 1998. Paleoclimate simulations for North America over the past 21,000 years: features of the simulated climate and comparisons with paleoenvironmental data. Quat. Sci. Rev., 17(6–7):549–585. doi:10.1016/S0277-3791(98)00012-2

Behl, R.J., and Kennett, J.P., 1996. Brief interstadial events in the Santa Barbara Basin, NE Pacific, during the last 60 kyr. Nature (London, U. K.), 379(6562):243–246. doi:10.1038/379243a0

Berger, A.L., Gulick, S.P.S., Spotila, J.A., Upton, P., Jaeger, J.M., Chapman, J.B., Worthington, L.A., Pavlis, T.L., Ridgway, K.D., Willems, B.A., and McAleer, R.J., 2008a. Quaternary tectonic response to intensified glacial erosion in an orogenic wedge. Nat. Geosci., 1:793–799. doi:10.1038/ngeo334

Berger, A.L., Spotila, J.A., Chapman, J.B., Pavlis, T.L., Enkelmann, E., Ruppert, N.A., and Buscher, J.T., 2008b. Architecture, kinematics, and exhumation of a convergent orogenic wedge: a thermochronoligical investigation of tectonic–climatic interactions within the central St. Elias orogen, Alaska. Earth Planet. Sci. Lett., 270(1–2):13–24. doi:10.1016/j.epsl.2008.02.034

Bloxham, J., 2000. The effect of thermal core–mantle interactions on the palaeomagnetic secular variation. Philos. Trans. R. Soc., A, 358(1768):1171–1179. doi:10.1098/rsta.2000.0579

Bloxham, J., and Gubbins, D., 1987. Thermal core–mantle interactions. Nature (London, U. K.), 325:511–513. doi:10.1038/325511a0

Boyd, P.W., Law, C.S., Wong, C.S., Nojiri, Y., Tsuda, A., Levasseur, M., Takeda, S., Rivkin, R., Harrison, P.J., Strzepek, R., Gower, J., McKay, R.M., Abraham, E., Arychuk, M., Barwell-Clarke, J., Crawford, W., Crawford, D., Hale, M., Harada, K., Johnson, K., Kiyosawa, H., Kudo, I., Marchetti, A., Miller, W., Needoba, J., Nishioka, J., Ogawa, H., Page, J., Robert, M., Saito, H., Sastri, A., Sherry, N., Soutar, T., Sutherland, N., Taira, Y., Whitney, F., Wong, S.-K.E., and Yoshimura, T., 2004. The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature (London U. K.), 428(6982):549–553. doi:10.1038/nature02437

Briner, J.P., Kaufman, D.S., Werner, A., Caffee, M., Levy, L., Manley, W.F., Kaplan, M.R., and Finkel, R.C., 2002. Glacier readvance during the late glacial (Younger Dryas?) in the Ahklun Mountains, southwestern Alaska. Geology, 30(8):679–682. doi:10.1130/​0091-7613(2002)030<0679:GRDTLG>2.0.CO;2

Brocher, T.M., Fuis, G.S., Fisher, M.A., Plafker, G., Moses, M.J., Taber, J.J., and Christensen, N.I., 1994. Mapping the megathrust beneath the northern Gulf of Alaska using wide-angle seismic data. J. Geophys. Res., [Solid Earth], 99(B6):11663–11685. doi:10.1029/94JB00111

Bruhn, R.L., Pavlis, T.L., Plafker, G., and Serpa, L., 2004. Deformation during terrane accretion in the Saint Elias orogen, Alaska. Geol. Soc. Am. Bull., 116(7–8):771–787. doi:10.1130/B25182.1

Bruns, T.R., 1983. Model for the origin of the Yakutat block, an accreting terrane in the northern Gulf of Alaska. Geology, 11(12):718–721. doi:10.1130/​0091-7613(1983)11<718:MFTOOT>2.0.CO;2

Bruns, T.R., 1985. Tectonics of the Yakutat block, an allochthonous terrane in the northern Gulf of Alaska. Open-File Rep.–U.S. Geol. Surv., 85-13. http://​​webpubs/​usgs/​of/​text/​of85-0013.PDF

Bruns, T.R., and Schwab, W.C., 1983. Structure maps and seismic stratigraphy of the Yakataga segment of the continental margin, northern Gulf of Alaska. U.S. Geol. Surv., MF-1424.

Calkin, P.E., Wiles, G.C., and Barclay, D.J., 2001. Holocene coastal glaciation of Alaska. Quat. Sci. Rev., 20(1–3):449–461. doi:10.1016/​S0277-3791(00)00105-0

Carlson, P.R., 1989. Seismic reflection characteristics of glacial and glacimarine sediment in the Gulf of Alaska and adjacent fjords. Mar. Geol., 85(2–4):391–416. doi:10.1016/0025-3227(89)90161-8

Carlson, P.R., Bruns, T.R., Molnia, B.F., and Schwab, W.C., 1982. Submarine valleys in the northeastern Gulf of Alaska: characteristics and probable origin. Mar. Geol., 47(3–4):217–242. doi:10.1016/0025-3227(82)90070-6

Carlson, P.R., Stevenson, A.J., Bruns, T.R., Mann, D.M., and Huggett, Q., 1996. Sediment pathways in the Gulf of Alaska from beach to abyssal plain. In Gardner, J.V., Field, M.E., and Twichell, D.C. (Eds.), Geology of the United States’ Seafloor: The View from GLORIA: Cambridge, (Cambridge Univ.), 255–278. doi:10.1017/CBO9780511529481.021

Channell, J.E.T., 1999. Geomagnetic paleointensity and directional secular variation at Ocean Drilling Program (ODP) Site 984 (Bjorn Drift) since 500 ka: comparisons with ODP Site 983 (Gardar Drift). J. Geophys. Res., [Solid Earth], 104(B10):22937–22951. doi:10.1029/1999JB900223

Channell, J.E.T., Hodell, D.A., McManus, J., and Lehman, B., 1998. Orbital modulation of the Earth’s magnetic field intensity. Nature (London, U. K.), 394:464–468. doi:10.1038/28833

Channell, J.E.T., Kanamatsu, T., Sato, T., Stein, R., Alvarez Zarikian, C.A., Malone, M.J., and the Expedition 303/306 Scientists, 2006. Proc. IODP, 303/306: College Station, TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.303306.2006

Channell, J.E.T., Mazaud, A., Sullivan, P., Turner, S., and Raymo, M.E., 2002. Geomagnetic excursions and paleointensities in the Matuyama Chron at Ocean Drilling Program Sites 983 and 984 (Iceland Basin). J. Geophys. Res., [Solid Earth], 107(B6):2114–2127. doi:10.1029/2001JB000491

Channell, J.E.T., Xuan, C., and Hodell, D.A., 2009. Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500). Earth Planet. Sci. Lett., 283(1–4):14–23. doi:10.1016/j.epsl.2009.03.012

Chapman, J.B., Pavlis, T.L., Gulick, S., Berger, A., Lowe, L., Spotila, J., Bruhn, R., Vorkink, M., Koons, P., Barker, A., Picomell, C., Ridgway, K., Hallet, B., Jaeger, J., and McCalpin, J., 2008. Neotectonics of the Yakutat collision: changes in deformation driven by mass redistribution. In Freymueller, J.T., Haeussler, P.J., Wesson, R., and Ekstrom, G. (Eds.), Active Tectonics and Seismic Potential of Alaska. Geophys. Monogr., 179:65–81.

Chase, Z., Strutton, P.G., and Hales, B., 2007. Iron links river runoff and shelf width to phytoplankton biomass along the U.S. West Coast. Geophys. Res. Lett., 34:L04607–L04613. doi:10.1029/2006GL028069

Childers, A.R., Whitledge, T.E., and Stockwell, D.A., 2005. Seasonal and interannual variability in the distribution of nutrients and chlorophyll a across the Gulf of Alaska shelf: 1998–2000. Deep-Sea Res., Part II, 52(1–2):193–216. doi:10.1016/j.dsr2.2004.09.018

Christeson, G.L., Gulick, S.P.S., van Avendonk, H.J.A, Worthington, L.L., Reece, R.S., and Pavlis, T.L., 2010. The Yakutat terrane: dramatic change in crustal thickness across the Transition fault, Alaska. Geology, 38(10):895–898. doi:10.1130/G31170.1

Clapperton, C., 2000. Interhemispheric synchroneity of marine oxygen isotope Stage 2 glacier fluctuations along the American cordilleras transect. J. Quat. Sci., 15(4):435–468. doi:10.1002/​1099-1417(200005)15:4<435::AID-JQS552>3.0.CO;2-R

Clark, P.U., and Bartlein, P.J., 1995. Correlation of late Pleistocene glaciation in the western United States with North Atlantic Heinrich events. Geology, 23(6):483–486. doi:10.1130/​0091-7613(1995)023<0483:COLPGI>2.3.CO;2

Clement, B.M., 2004. Dependence of the duration of geomagnetic polarity reversals on site latitude. Nature (London, U. K.), 428:637–640. doi:10.1038/nature02459

Cowan, D.S., 1982. Geological evidence for post–40 m.y. B.P. large-scale northwestward displacement of part of southeastern Alaska. Geology, 10(6):309–313. doi:10.1130/​0091-7613(1982)10<309:GEFPMB>2.0.CO;2

Cowan, E.A., Brachfeld, S.A., Powell, R.D., and Schoolfield, S.C., 2006. Terrane-specific rock magnetic characteristics preserved in glacimarine sediment from southern coastal Alaska. Can. J. Earth Sci., 43(9):1269–1282. doi:10.1139/e06-042

Cox, A., and Doell, R.R., 1964. Long period variations of the geomagnetic field. Bull. Seismol. Soc. Am., 54(6B):2243–2270.

Dahlgren, K.I.T., Vorren, T.O., Stoker, M.S., Nielsen, T., Nygård, A., and Sejrup, H.P., 2005. Late Cenozoic prograding wedges on the NW European continental margin: their formation and relationship to tectonics and climate. Mar. Pet. Geol., 22(9–10):1089–1110. doi:10.1016/j.marpetgeo.2004.12.008

Davies, M.H., Mix, A.C., Stoner, J.S., Addison, J.A., Jaeger, J., Finney, B., and Wiest, J., 2011. The deglacial transition on the southeastern Alaskan Margin: meltwater input, sea level rise, marine productivity, and sedimentary anoxia. Paleoceanography, 26:PA2223–PA2240. doi:10.1029/2010PA002051

DeMets, C., and Dixon, T.H., 1999. New kinematic models for Pacific-North America motion from 3 Ma to present, I: evidence for steady motion and biases in the NUVEL-1A model. Geophys. Res. Lett., 26(13):1921–1924. doi:10.1029/1999GL900405

Donnelly, T.W., 1982. Worldwide continental denudation and climatic deterioration during the late Tertiary: evidence from deep-sea sediments. Geology, 10(9):451–454. doi:10.1130/​0091-7613(1982)10<451:WCDACD>2.0.CO;2

Dumoulin, J.A., 1987. Sandstone composition of the Valdez and Orca groups, Prince William Sound, Alaska. U.S. Geol. Surv. Bull., 1774. http://​​webpubs/​usgs/​b/​text/​b1774.PDF

Dunbar, G.B., Naish, T.R., Barrett, P.J., Fielding, C.R., and Powell, R.D., 2008. Constraining the amplitude of late Oligocene bathymetric changes in western Ross Sea during orbitally-induced oscillations in the East Antarctic Ice Sheet, 1. Implications for glacimarine sequence stratigraphic models. Palaeogeogr., Palaecoclimatol., Palaeoecol., 260(1–2):50–65. doi:10.1016/j.palaeo.2007.08.018

Eberhart-Philips, D., Christensen, D.H., Brocher, T.M., Hansen, R., Ruppert, N.A., Haeussler, P.J., and Abers, G.A., 2006. Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data. J. Geophys. Res., [Solid Earth], 111:B11303–B11333. doi:10.1029/2005JB004240

Eidvin, T., Jansen, E., and Riis, F., 1993. Chronology of Tertiary fan deposits off the western Barents Sea: implications for the uplift and erosion history of the Barents shelf. Mar. Geol., 112(1–4):109–131. doi:10.1016/0025-3227(93)90164-Q

Elliott, J.L., Larsen, C.F., Freymueller, J.T., and Motyka, R.J., 2010. Tectonic block motion and glacial isostatic adjustment in southeast Alaska and adjacent Canada constrained by GPS measurements. J. Geophys. Res., [Solid Earth], 115:B09407–B09427. doi:10.1029/2009JB007139

Elverhøi, A., Andersen, E.S., Dokken, T., Hebbeln, D., Spielhagen, R., Svendsen, J.I., Sørflaten, M., Rørnes, A., Hald, M., and Forsberg, C.F., 1995. The growth and decay of the Late Weichselian ice sheet in western Svalbard and adjacent areas based on provenance studies of marine sediments. Quat. Res., 44(3):303–316. doi:10.1006/qres.1995.1076

Emile-Geay, J., Cane, M.A., Naik, N., Seager, R., Clement, A.C., and van Geen, A., 2003. Warren revisited: atmospheric freshwater fluxes and ‘‘why is no deep water formed in the North Pacific?’’ J. Geophys. Res., [Oceans], 108:3178–3189. doi:10.1029/2001JC001058

Engstrom, D.R., Hansen, B.C.S., and Wright, H.E., Jr., 1990. A possible Younger Dryas record in southeastern Alaska. Science, 250(4986):1383–1385. doi:10.1126/science.250.4986.1383

Enkelmann, E., Garver, J.I., and Pavlis, T.L., 2008. Rapid exhumation of ice-covered rocks of the Chugach–St. Elias orogen, southeast Alaska. Geology, 36(12):915–918. doi:10.1130/G2252A.1

Enkelmann, E., Zeitler, P.K., Garver, J.I., Pavlis, T.L., and Hooks, B.P., 2010. The thermochronological record of tectonic and surface process interaction at the Yakutat–North American collision zone in southeast Alaska. Am. J. Sci., 310:231–260. doi:10.2475/04.2010.01

Enkelmann, E., Zeitler, P.K., Pavlis, T.L., Garver, J.I., and Ridgway, K.D., 2009. Intense localized rock uplift and erosion in the St. Elias orogen of Alaska. Nat. Geosci., 2:360–363. doi:10.1038/ngeo502

Escutia, C., Brinkhuis, H., Klaus, A., and the Expedition 318 Scientists, 2011. Proc. IODP, 318: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.318.2011

Eyles, C.H., Eyles, N., and Lagoe, M.B., 1991. The Yakataga formation: a late Miocene to Pleistocene record of temperate glacial marine sedimentation in the Gulf of Alaska. In Anderson, J.B., and Ashley, G.M. (Eds.), Glacial Marine Sedimentation: Paleoclimatic Significance. Spec. Pap.—Geol. Soc. Am., 261:159–180.

Feely, R.A., Baker, E.T., Schumacher, J.D., Massoth, G.J., and Landing, W.M., 1979. Processes affecting the distribution and transport of suspended matter in the northeast Gulf of Alaska. Deep-Sea Res., Part A, 26(4):445–464. doi:10.1016/​0198-0149(79)90057-8

Ferris, A., Abers, G.A., Christensen, D.H., and Veenstra, E., 2003. High resolution image of the subducted Pacific (?) plate beneath central Alaska, 50–150 km depth. Earth Planet. Sci. Lett., 214(3–4):575–588. doi:10.1016/S0012-821X(03)00403-5

Finzel, E.S., Trop, J.M., Ridgway, K.D., and Enkelmann, E., 2011. Upper plate proxies for flat-slab subduction processes in southern Alaska. Earth Planet. Sci. Lett., 303(3–4):348–360. doi:10.1016/j.epsl.2011.01.014

Foster, H.L., Keith, T.E.C., and Menzie, W.D., 1994. Geology of the Yukon-Tanana area of east-central Alaska. In Plafker, G., and Berg, H.C. (Eds.), The Geology of North America (Vol. G): The Geology of Alaska: Boulder, Colorado (Geol. Soc. Am.), 205–240.

Galbraith, E.D., Jaccard, S.L., Pedersen, T.F., Sigman, D.M., Haug, G.H., Cook, M., Southon, J.R., and Francois, R., 2007. Carbon dioxide release from the North Pacific abyss during the last deglaciation. Nature (London, U. K.), 449:890–893. doi:10.1038/nature06227

Gardner, J.V., Mayer, L.A., and Armstrong, A., 2006. Mapping supports potential submission to U.N. Law of the Sea. Eos, Trans. Am. Geophys. Union, 87(16):157. doi:10.1029/2006EO160002

Gebhardt, H., Sarnthein, M., Grootes, P.M., Kiefer, T., Kuehn, H., Schmieder, F., and Röhl, U., 2008. Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V. Paleoceanography, 23:PA4212–PA4232. doi:10.1029/2007PA001513

Gehrels, G.E., and Berg, H.C., 1994. Geology of southeastern Alaska. In Plafker, G., and Berg, H.C. (Eds.), The Geology of North America: The Geology of Alaska (Vol. G-1): Boulder, CO (Geol. Soc. Am.), 451–468.

Gehrels, G.E., and Saleeby, J.B., 1987. Geologic framework, tectonic evolution, and displacement history of the Alexander terrane. Tectonics, 6(2):151–173. doi:10.1029/TC006i002p00151

Geiss, C.E., and Banerjee, S.K., 2003. A Holocene–late Pleistocene geomagnetic inclination record from Grandfather Lake, SW Alaska. Geophys. J. Int., 153(2):497–507. doi:10.1046/j.1365-246X.2003.01921.x

Gilhousen, D.B., Quayle, R.G., Baldwin, R.G., Karl, T.R., and Brines, R.O., 1983. Climatic Summaries for NOAA Data Buoys: Asheville, NC (National Climatic Data Center).

Grigg, L.D., Whitlock, C., and Dean, W.E., 2001. Evidence for millennial-scale climate change during marine isotope Stages 2 and 3 at Little Lake, western Oregon, U.S.A. Quat. Res., 56(1):10–22. doi:10.1006/qres.2001.2246

Gubbins, D., Jones, A.L., and Finlay, C.C., 2006. Fall in Earth’s magnetic field is erratic. Science, 312(5775):900–902. doi:10.1126/science.1124855

Gubbins, D., and Kelly, P., 1993. Persistent patterns in the geomagnetic field over the last 2.5 Myr. Nature (London, U. K.), 365:829–832. doi:10.1038/365829a0

Gubbins, D., Willis, A.P., and Sreenivasan, B., 2007. Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure. Phys. Earth Planet. Inter., 162(3–4):256–260. doi:10.1016/j.pepi.2007.04.014

Gulick, S.P.S., Lowe, L.A., PavIis, T.L., Gardner, J.V., and Mayer, L.A., 2007. Geophysical insights into the Transition fault debate: propagating strike slip in response to stalling Yakutat block subduction in the Gulf of Alaska. Geology, 35(8):763–766. doi:10.1130/G23585A.1

Guyodo, Y., and Valet, J.-P., 1999. Global changes in intensity of the Earth’s magnetic field during the past 800 kyr. Nature (London, U. K.), 399(6733):249–252. doi:10.1038/20420

Hallet, B., Hunter, L., and Bogen, J., 1996. Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Global Planet. Change, 12(1–4):213–235. doi:10.1016/0921-8181(95)00021-6

Haeussler, P.J., Gehrels, G.E., and Karl, S.M., 2006. Constraints on the age and provenance of the Chugach accretionary complex from detrital zircons in the Sitka graywacke near Sitka, Alaska. U.S. Geol. Surv. Prof. Pap., 1709-F.

Harrison, P.J., Boyd, P.W., Varela, D.E., Takeda, S., Shiomoto, A., and Odate, T., 1999. Comparison of factors controlling phytoplankton productivity in the NE and NW subarctic Pacific gyres. Prog. Oceanogr., 43(2–4):205–234. doi:10.1016/​S0079-6611(99)00015-4

Hay, W.W., Soeding, E., DeConto, R.M., and Wold, C.N., 2002. The late Cenozoic uplift—climate change paradox. Int. J. Earth Sci., 91(5):746–774. doi:10.1007/s00531-002-0263-1

Hayes, D.E., Frakes, L.A., et al., 1975. Init. Repts. DSDP, 28: Washington, DC (U.S. Govt. Printing Office). doi:10.2973/dsdp.proc.28.1975

Hayes, S.P., 1979. Variability of current and bottom pressure across the continental shelf in the northeast Gulf of Alaska. J. Phys. Oceanogr., 9(1):88–103. doi:10.1175/​1520-0485(1979)009<0088:VOCABP>2.0.CO;2

Hayes, S.P., and Schumacher, J.D., 1976. Description of wind, current, and bottom pressure variations on continental shelf in northeast Gulf of Alaska from February to May 1975. J. Geophys. Res., [Oceans], 81(36):6411–6419. doi:10.1029/JC081i036p06411

Hendy, I.L., and Cosma, T., 2008. Vulnerability of the Cordilleran Ice Sheet to iceberg calving during late Quaternary rapid climate change events. Paleoceanography, 23:PA2101–PA2108. doi:10.1029/2008PA001606

Hendy, I.L., and Kennett, J.P., 1999. Latest Quaternary North Pacific surface-water responses imply atmosphere-driven climate instability. Geology, 27(4):291–294. doi:10.1130/​0091-7613(1999)027<0291:LQNPSW>2.3.CO;2

Hill, H.W., Flower, B.P., Quinn, T.M., Hollander, D.J., and Guilderson, T.P., 2006. Laurentide Ice Sheet meltwater and abrupt climate change during the last glaciation. Paleoceanography, 21:PA1006–PA1014. doi:10.1029/​2005PA001186

Hogan, L.G., Scheidegger, K.F., Kulm, L.D., Dymond, J., and Mikkelsen, N., 1978. Biostratigraphic and tectonic implications of 40Ar-39Ar dates of ash layers from the northeast Gulf of Alaska. Geol. Soc. Am. Bull., 89(8):1259–1264. doi:10.1130/​0016-7606(1978)89<1259:BATIOA>2.0.CO;2

Hoth, S., Adam, J., Kukowski, N., and Oncken, O., 2006. Influence of erosion on the kinematics of bivergent orogens: results from scaled sandbox simulations. Spec. Pap.—Geol. Soc. Am., 398:201–225. doi:10.1130/​2006.2398(12)

Hu, F.S., Nelson, D.M., Clarke, G.H., Rühland, K.M., Huang, Y., Kaufman, D.S., and Smol, J.P., 2006. Abrupt climatic events during the last glacial–interglacial transition in Alaska. Geophys. Res. Lett., 33:L18708–L18713. doi:10.1029/​2006GL027261

Jaccard, S.L., Haug, G.H., Sigman, D.M., Pedersen, T.F., Thierstein, H.R., and Röhl, U., 2005. Glacial/interglacial changes in subarctic North Pacific stratification. Science, 308(5724):1003–1006. doi:10.1126/science.1108696

Jaeger, J.M., Nittrouer, C.A., Scott, N.D., and Milliman, J.D., 1998. Sediment accumulation along a glacially impacted mountainous coastline: north-east Gulf of Alaska. Basin Res., 10(1):155–173. doi:10.1046/j.1365-2117.1998.00059.x

Jaeger, J.M., Rosen, G.P., Kramer, B., Stoner, J., Cowan, E.A., and Channell, J., 2008. Cross-margin signal transfer in a glacial source-to-sink sedimentary system: Bering Glacier, southern Alaska [presented at the 2008 Ocean Sciences Meeting, Orlando, Florida, 2–7 March 2008].

Jones, D.L., Silberling, N.J., and Hillhouse, J., 1977. Wrangellia—a displaced terrane in northwestern North America. Can. J. Earth Sci., 14(11):2565–2577. doi:10.1139/​e77-222

Keigwin, L.D., and Cook, M.S., 2007. A role for North Pacific salinity in stabilizing North Atlantic climate. Paleoceanography, 22:PA3102–PA3106. doi:10.1029/2007PA001420

Koons, P.O., 1995. Modeling the topographic evolution of collisional belts. Annu. Rev. Earth Planet. Sci., 23:375–408. doi:10.1146/​annurev.ea.23.050195.002111

Kreemer, C., Holt, W.E., and Haines, A.J., 2003. An integrated global model of present-day plate motions and plate boundary deformation. Geophys. J. Int., 154(1):8–34. doi:10.1046/j.1365-246X.2003.01917.x

Krissek, L.A., 1995. Late Cenozoic ice-rafting records from Leg 145 sites in the North Pacific: late Miocene onset, late Pliocene intensification, and Pliocene–Pleistocene events. In Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), Proc. ODP, Sci. Results, 145: College Station, TX (Ocean Drilling Program), 179–194. doi:10.2973/

Kulm, L.D., von Huene, R., et al., 1973. Init. Repts. DSDP, 18: Washington, DC (U.S. Govt. Printing Office). doi:10.2973/dsdp.proc.18.1973

Kusky, T.M., Bradley, D.C., and Haeussler, P., 1997. Progressive deformation of the Chugach accretionary complex, Alaska, during a Paleogene ridge-trench encounter. J. Struct. Geol., 19(2):139–157. doi:10.1016/​S0191-8141(96)00084-3

Landis, P.S., 2007. Stratigraphic framework and provenance of the Eocene–Oligocene Kulthieth formation, Alaska: implications for paleogeography and tectonics of the early Cenozoic continental margin of northwestern North America [M.S. thesis]. Purdue Univ., West Lafayette, Indiana.

Lagoe, M.B., Eyles, C.H., Eyles, N., and Hale, C., 1993. Timing of late Cenozoic tidewater glaciation in the far North Pacific. Geol. Soc. Am. Bull., 105(12):1542–1560. doi:10.1130/​0016-7606(1993)105<1542:TOLCTG>2.3.CO;2

Lagoe, M.B., and Zellers, S.D., 1996. Depositional and microfaunal response to Pliocene climate change and tectonics in the eastern Gulf of Alaska. Mar. Micropaleontol., 27(1–4):121–140. doi:10.1016/​0377-8398(95)00055-0

Laj, C., Kissel, C., and Beer, J., 2004. High-resolution global paleointensity stack since 75 kyr (GLOPIS-75) calibrated to absolute values. In Channell, J.E.T., Kent, D.V., Lowrie, W., and Meert, J. (Eds.), Timescales of the Internal Geomagnetic Field. Geophys. Monogr., 145:255–266.

Lam, P.J., and Bishop, J.K.B., 2008. The continental margin is a key source of iron to the HNLC North Pacific Ocean. Geophys. Res. Lett., 35:L07608–L07612. doi:10.1029/2008GL033294

Larsen, H.C., Saunders, A.D., Clift, P.D., et al., 1994. Proc. ODP, Init. Repts., 152: College Station, TX (Ocean Drilling Program). doi:10.2973/​

Lisiecki, L.E., and Raymo, M.E., 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1):PA1003–PA1019. doi:10.1029/2004PA001071

Lund, S.P., 1996. A comparison of Holocene paleomagnetic secular variation records from North America. J. Geophys. Res., 101(B4):8007–8024. doi:10.1029/​95JB00039

Lund, S.P., Acton, G.D., Clement, B., Hastedt, M., Okada, M., Williams, T., and ODP Leg 172 Scientific Party, 1998. Geomagnetic field excursions occurred often during the last million years. Eos, Trans. Am. Geophys. Union, 79(14):179. doi:10.1029/98EO00134

Lund, S.P., Acton, G.D., Clement, B., Okada, M., and Williams, T., 2001. Paleomagnetic records of Stage 3 excursions, Leg 172. In Keigwin, L.D., Rio, D., Acton, G.D., and Arnold, E. (Eds.), Proc. ODP, Sci. Results, 172: College Station, TX (Ocean Drilling Program), 1–20. doi:10.2973/​

Lund, S.P., Schwartz, M., Keigwin, L., and Johnson, T., 2005. Deep-sea sediment records of the Laschamp geomagnetic field excursion (~41,000 calendar years before present). J. Geophys. Res., [Solid Earth], 110:B04101–B04115. doi:10.1029/​2003JB002943

Lund, S., Stoner, J.S., Channell, J.E.T., and Acton, G., 2006. A summary of Brunhes paleomagnetic field variability recorded in Ocean Drilling Program cores. Phys. Earth Planet. Int., 156(3–4):194–204. doi:10.1016/​j.pepi.2005.10.009

Mahowald, N.M., Baker, A.R., Bergametti, G., Brooks, N., Duce, R.A., Jickells, T.D., Kubilay, N., Prospero, J.M., and Tegen, I., 2005. Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem. Cycles, 19:GB4024–GB4038. doi:10.1029/2004GB002402

Malavieille, J., 2010. Impact of erosion, sedimentation, and structural heritage on the structure and kinematics of orogenic wedges: analog models and case studies. GSA Today, 20(1):4–10. doi:10.1130/GSATG48A.1

Manley, W., and Kaufman, D.S., 2002. Alaska Paleoglacier Atlas: Boulder, CO (Inst. Arct. Alp. Res., Univ. Colorado). http://​​QGISL/​ak_paleoglacier_atlas/

Mann, D.H., Crowell, A.L., Hamilton, T.D., and Finney, B.P., 1998. Holocene geologic and climatic history around the Gulf of Alaska. Arct. Anthropol., 35(1):112–131.

Mann, D.H., and Peteet, D.M., 1994. Extent and timing of the Last Glacial Maximum in southwestern Alaska. Quat. Res., 42(2):136–148. doi:10.1006/​qres.1994.1063

Mayer, L.A., Gardner, J.V., Armstrong, A., Calder, B.R., Malik, M., Angwenyi, C., Karlpata, S., Montoro-Dantes, H., Morishita, T., Mustapha, A., van Waes, M., Wood, D., and Withers, A., 2005. New views of the Gulf of Alaska Margin mapped for UNCLOS applications. Eos, Trans. Am. Geophys. Union, 88(52)(Suppl.):T13D-0500. (Abstract) http://​​meetings/​fm05/​waisfm05.html

Mazaud, A., Channell, J.E.T., Xuan, C., and Stoner, J.S., 2009. Upper and lower Jaramillo polarity transitions recorded in IODP Expedition 303 North Atlantic sediments: implications for transitional field geometry. Phys. Earth Planet. Inter., 172(3–4):131–140. doi:10.1016/​http://​​10.1016/​j.pepi.2008.08.012j.pepi.2008.08.012

Mazzotti, S., and Hyndman, R.D., 2002. Yakutat collision and strain transfer across the northern Canadian cordillera. Geology, 30(6):495–498. doi:10.1130/​0091-7613(2002)030<0495:YCASTA>2.0.CO;2

McDonald, D., Pedersen, T.F., and Crusius, J., 1999. Multiple late Quaternary episodes of exceptional diatom production in the Gulf of Alaska. Deep-Sea Res., Part II, 46(11–12):2993–3017. doi:10.1016/S0967-0645(99)00091-0

Meigs, A., Johnston, S., Garver, J., and Spotila, J., 2008. Crustal-scale structural architecture, shortening, and exhumation of an active, eroding orogenic wedge (Chugach/St. Elias Range, southern Alaska). Tectonics, 27:TC4003–TC4028. doi:10.1029/​2007TC002168

Menviel, L., Timmermann, A., Timm, O.E., Mouchet, A., Abe-Ouchi, A., Chikamoto, M.O., Harada, N., Ohgaito, R., and Okazaki, Y., in press. Removing the North Pacific halocline: effects on global climate, ocean circulation and the carbon cycle. Deep-Sea Res., Part II. doi:10.1016/j.dsr2.2011.03.005

Mix, A.C., Bard, E., and Schneider, R., 2001. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat. Sci. Rev., 20(4):627–657. doi:10.1016/​S0277-3791(00)00145-1

Mix, A.C., Lund, D.C., Pisias, N.G., Bodén, P., Bornmalm, L., Lyle, M., and Pike, J., 1999. Rapid climate oscillations in the Northeast Pacific during the last deglaciation reflect Northern and Southern Hemisphere sources. In Webb, R.S., Clark, P.U., and Keigwin, L. (Eds.), Mechanisms of Millennial-scale Global Climate Change. Geophys. Monogr., 112:127–148.

Molnar, P., 2004. Late Cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates? Annu. Rev. Earth Planet. Sci., 32:67–89. doi:10.1146/

Molnar, P., and England, P., 1990. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature (London, U. K.), 346:29–34. doi:10.1038/​346029a0

Molnia, B.F., 1986. Late Wisconsin glacial history of the Alaskan continental margin. In Hamilton, T.D., Reed, K.M., and Thorson, R.M. (Eds.), Glaciation in Alaska: The Geologic Record: Anchorage, AK (Alaska Geol. Soc.), 219–236.

Molnia, B.F., and Sangrey, D.A., 1979. Glacially derived sediments in the northern Gulf of Alaska—geology and engineering characteristics. Proc.—Annu. Offshore Technol. Conf., 1:647–655. doi:10.4043/3433-MS

Neal, E.G., Hood, E., and Smikrud, K., 2010. Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska. Geophys. Res. Lett., 37:L06404–L06408. doi:10.1029/2010GL042385

Ness, G.E., and Kulm, L.D., 1973. Origin and development of Surveyor Deep-Sea Channel. Geol. Soc. Am. Bull., 84(10):3339–3354. doi:10.1130/​0016-7606(1973)84<3339:OADOSD>2.0.CO;2

Nokleberg, W.J., Parfenov, L.M., Monger, J.W.H., Norton, I.O., Khanchuk, A.I., Stone, D.B., Scotese, C.R., Scholl, D.W., and Fujita, K., 2000. Phanerozoic tectonic evolution of the circum-North Pacific. Geol. Surv. Prof. Pap. U.S., 1626.

O’Brien, P.E., Cooper, A.K., Richter, C., et al., 2001. Proc. ODP, Init. Repts., 188: College Station, TX (Ocean Drilling Program). doi:10.2973/

Okazaki, Y., Timmermann, A., Menviel, L., Harada, N., Abe-Ouchi, A., Chikamoto, M.O., Mouchet, A., and Asahi, H., 2010. Deepwater formation in the North Pacific during the Last Glacial Termination. Science, 329(5988):200–204. doi:10.1126/​science.1190612

Pavlis, T.L., Hamburger, M.W., and Pavlis, G.L., 1997. Erosional processes as a control on the structural evolution of an actively deforming fold and thrust belt: an example from the Pamir-Tien Shan region, central Asia. Tectonics, 16(5):810–822. doi:10.1029/​97TC01414

Pavlis, T.L., Picornell, C., Serpa, L., Bruhn, R.L., and Plafker, G., 2004. Tectonic processes during oblique collision: insights from the St. Elias orogen, northern North American cordillera. Tectonics, 23(3):TC3001–TC3014. doi:10.1029/​2003TC001557

Perry, S.E., Garver, J.I., and Ridgway, K.D., 2009. Transport of the Yakutat terrane, Southern Alaska: evidence from sediment petrology and detrital zircon fission-track and U/Pb double dating. J. Geol., 117(2):156–173. doi:10.1086/596302

Peteet, D.M., 2007. Muskeg archives of vegetation, migration, and climate history in the Gulf of Alaskan arc. Abstr.—Geol. Soc. Am. http://​​gsa/​2007CD/​finalprogram/​abstract_120879.htm

Peteet, D.M., and Mann, D.H., 1994. Late-glacial vegetation, tephra, and climatic history of southwestern Kodiak Island, Alaska. Ecoscience, 1:255–267.

Pinter, N., and Brandon, M.T., 1997. How erosion builds mountains. Sci. Am., 276(4):74–79. doi:10.1038/scientificamerican0497-74

Plafker, G., 1987. Regional geology and petroleum potential of the northern Gulf of Alaska continental margin. In Scholl, D.W., Grantz, A., and Vedder, J.G. (Eds.), Petroleum Geology Potential of the Continental Margin of Western North America and Adjacent Ocean Basins. Earth Sci. Ser. (N. Y.), 6:229–268.

Plafker, G., Moore, J.C., and Winkler, G.R., 1994. Geology of the southern Alaska margin. In Plafker, G., and Berg, H.C. (Eds.), The Geology of North America: The Geology of Alaska (Vol. G-1): Boulder, CO (Geol. Soc. Am.), 389–449.

Powell, R.D., and Cooper, J.M., 2002. A glacial sequence stratigraphic model for temperate, glaciated continental shelves. In Dowdeswell, J.A., and Ó’Cofaigh, C. (Eds.), Glacier-Influenced Sedimentation on High-Latitude Continental Margins. Geol. Soc. Spec. Publ., 203:215–244. doi:10.1144/GSL.SP.2002.203.01.12

Powell, R.D., and Molnia, B.F., 1989. Glacimarine sedimentatary processes, facies and morphology of the south-southeast Alaska shelf and fjords. Mar. Geol., 85(2–4):359–390. doi:10.1016/0025-3227(89)90160-6

Prueher, L.M., and Rea, D.K., 1998. Rapid onset of glacial conditions in the subarctic North Pacific region at 2.67 Ma: clues to causality. Geology, 26(11):1027–1030. doi:10.1130/​0091-7613(1998)026<1027:ROOGCI>2.3.CO;2

Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.-L., Johnsen, S.J., Larsen, L.B., Dahl- Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.E., and Ruth, U., 2006. A new Greenland ice core chronology for the Last Glacial Termination. J. Geophys. Res., [Atmospheres], 111:D06102–D06118. doi:10.1029/​2005JD006079

Rea, D.K., Basov, I.A., Janecek, T.R., Palmer-Julson, A., et al., 1993. Proc. ODP, Init. Repts., 145: College Station, TX (Ocean Drilling Program). doi:10.2973/​

Rea, D.K., and Snoeckx, H., 1995. Sediment fluxes in the Gulf of Alaska: paleoceanographic record from Site 887 on the Patton-Murray Seamount platform. In Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), Proc. ODP, Sci. Results, 145: College Station, TX (Ocean Drilling Program), 247–256. doi:10.2973/​

Redfield, T.F., Scholl, D.W., Fitzgerald, P.G., and Beck, M.E., Jr., 2007. Escape tectonics and the extrusion of Alaska: past, present, and future. Geology, 35(11):1039–1042. doi:10.1130/G23799A.1

Reece, R.S., Gulick, S.P.S., Horton, B.K., Christeson, G.L., and Worthington, L.L., in press. Tectonic and climatic influence on the evolution of the Surveyor fan and channel system, Gulf of Alaska. Geosphere.

Reece, R.S., Gulick, S.P.S., Jaeger, J.M., Christeson, G., Worthington, L.L., and Pavlis, T.L., 2009. Erosion and deposition by cross-shelf glacial advance as a mechanism for channel inception in the Surveyor Fan, Gulf of Alaska. Abstr. Programs Geol. Soc. Am., 41(7):305. http://​​gsa/​2009AM/​finalprogram/​abstract_165472.htm

Richter, D.H., Preller, C.C., Labay, K.A., and Shrew, N.B., 2006. Geologic map of the Wrangell–Saint Elias National Park and Preserve, Alaska. Sci. Invest. Rep. (U. S. Geol. Surv.), SIM-2877. http://​​sim/​2006/​2877/

Riis, F., 1992. Dating and measuring of erosion, uplift and subsidence in Norway and the Norwegian shelf in glacial periods. Nor. Geol. Tiddskr. (1905–2000), 72(3):325–331. http://​​Global/​Norsk/​3-Publikasjoner/​Forskningsartikler/​Riis_1992.pdf

Risley, D.E., Martin, G.C., Lynch, M.B., Flett, T.O., Larson, J.A., Horowitz, W.L., and Turner, R.F., 1992. Geologic report for the Gulf of Alaska planning area. MMS Rep., 92-0065.

Roe, G.H., Stolar, D.B., and Willett, S.D., 2006. Response of a steady-state critical wedge orogen to changes in climate and tectonic forcing. Spec. Pap.—Geol. Soc. Am., 398:227–239. doi:10.1130/2005.2398(13)

Royer, T.C., 1981. Baroclinic transport in the Gulf of Alaska, Part II. Fresh water driven coastal current. J. Mar. Res., 39:251–266.

Royer, T.C., 1982. Coastal fresh water discharge in the northeast Pacific. J. Geophys. Res., [Oceans], 87(C3):2017–2021. doi:10.1029/JC087iC03p02017

Royer, T.C., 2005. Hydrographic responses at a coastal site in the northern Gulf of Alaska to seasonal and interannual forcing. Deep-sea Res., Part II, 52(1–2):267–288. doi:10.1016/j.dsr2.2004.09.022

Ruth, U., Barnola, J.-M., Beer, J., Bigler, M., Blunier, T., Castellano, E., Fischer, H., Fundel, F., Huybrechts, P., Kaufmann, P., Kipfstuhl, S., Lambrecht, A., Morganti, A., Oerter, H., Parrenin, F., Rybak, O., Severi, M., Udisti, R., Wilhelms, F., and Wolff, E., 2007. “EDML1”: a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150,000 years. Clim. Past, 3:475–484. doi:10.5194/cp-3-475-2007

Schroth, A.W., Crusius, J., Sholkovitz, E.R., and Bostick, B.C., 2009. Iron solubility driven by speciation in dust sources to the ocean. Nat. Geosci., 2:337–340. doi:10.1038/​ngeo501

Severmann S., McManus, J., Berelson, W.M., and Hammond, D.E., 2010. The continental shelf benthic iron flux and its isotope composition. Geochim. Cosmochim. Acta, 74(14):3984–4004. doi:10.1016/j.gca.2010.04.022

Shackleton, N.J., Hall, M.A., and Pate, D., 1995. Pliocene stable isotope stratigraphy of Site 846. In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 337–355. doi:10.2973/

Sheaf, M.A., Serpa, L., and Pavlis, T.L., 2003. Exhumation rates in the St. Elias Mountains, Alaska. Tectonophysics, 367(1–2):1–11. doi:10.1016/​S0040-1951(03)00124-0

Siddall, M., Stocker, T.F., and Clark, P.U., 2009. Constraints on future sea level rise from past sea level change. Nat. Geosci., 2:571–575. doi:10.1038/ngeo587

Sigman, D.M., Jaccard, S.L., and Haug, G.H., 2004. Polar ocean stratification in a cold climate. Nature (London, U. K.), 428(6978):59–63. doi:10.1038/nature02357

Simpson, G.D.H., 2010. Formation of accretionary prisms influenced by sediment subduction and supplied by sediments from adjacent continents. Geology, 38(2):131–134. doi:10.1130/G30461.1

Singer, B.S., Relle, M.K., Hoffman, K.A., Battle, A., Laj, C., Guillou, H., and Carracedo, J.C., 2002. Ar/Ar ages from transitionally magnetized lavas on La Palma, Canary Islands, and the geomagnetic instability timescale. J. Geophys. Res., [Solid Earth], 107(B11):2307–2327. doi:10.1029/2001JB001613

Smith, W.H.F., and Sandwell, D.T., 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334):1956–1962. doi:10.1126/science.277.5334.1956

Spotila, J.A., and Berger, A.L., 2010. Exhumation at orogenic indentor corners under long-term glacial conditions: example of the St. Elias orogen, southern Alaska. Tectonophysics, 490(3–4): 241–256. doi:10.1016/j.tecto.2010.05.015

Spotila, J.A., Buscher, J.T., Meigs, A.J., and Reiners, P.W., 2004. Long-term glacial erosion of active mountain belts: example of the Chugach–St. Elias Range, Alaska. Geology, 32(6):501–504. doi:10.1130/G20343.1

Srivastava, S.P., Arthur, M., Clement, B., et al., 1987. Proc. ODP, Init. Repts., 105: College Station, TX (Ocean Drilling Program). doi:10.2973/​

Stabeno, P.J., Bond, N.A., Hermann, A.J., Kachel, N.B., Mordy, C.W., and Overland, J.E., 2004. Meteorology and oceanography of the northern Gulf of Alaska. Continent. Shelf Res., 24(7–8):859–897. doi:10.1016/j.csr.2004.02.007

Stabeno, P.J., Reed, R.K., and Schumacher, J.D., 1995. The Alaska Coastal Current: continuity of transport and forcing. J. Geophys. Res., [Oceans], 100(C2):2477–2485. doi:10.1029/94JC02842

Stevenson, A.J., and Embley, R., 1987. Deep-sea fan bodies, terrigenous turbidite sedimentation, and petroleum geology, Gulf of Alaska. In Scholl, D.W., Grantz, A., and Vedder, J.G. (Eds.), Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Ocean Basins—Beaufort Sea to Baja California. Earth Sci. Ser. (N. Y.), 503–522.

Stolar, D.B., Willett, S.D., and Roe, G.H., 2006. Climatic and tectonic forcing of a critical orogen. Spec. Pap.—Geol. Soc. Am., 398:241–50. doi:10.1130/​2006.2398(14)

Stoner, J.S., 2009. Towards an understanding of paleomagnetic secular variation: observations from the North Atlantic, implications for the world? Geol. Soc. Am. Abstr. Program, 41(7):46. http://​​gsa/​2009AM/​finalprogram/​abstract_166811.htm

Stoner, J.S., Channell, J.E.T., Hillaire-Marcel, C., and Kissel, C., 2000. Geomagnetic paleointensity and environmental record from Labrador Sea Core MD95-2024: global marine sediment and ice core chronostratigraphy for the last 110 kyr. Earth Planet. Sci. Lett., 183(1–2):161–177. doi:10.1016/S0012-821X(00)00272-7

Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Rasmussen, S.O., Röthlisberger, R., Steffensen, J.P., and Vinther, B.M., 2006. The Greenland ice core chronology 2005, 15–42 ka, Part 2. Comparison to other records. Quat. Sci. Rev., 25(23–24):3258–3267. doi:10.1016/​j.quascirev.2006.08.003

The Shipboard Scientific Party, 1973. Site 178. In Kulm, L., and von Huene, R., et al., Init. Repts. DSDP, 18: Washington, DC (U.S. Govt. Printing Office), 287–376. doi:10.2973/dsdp.proc.18.109.1973

Tomkin, J.H., 2007. Coupling glacial erosion and tectonics at active orogens: a numerical modeling study. J. Geophys. Res., [Earth Surface], 112:F02015–F02028. doi:10.1029/2005JF000332

Tomkin, J.H., and Roe, G.H., 2007. Climate and tectonic controls on glaciated critical-taper orogens. Earth Planet. Sci. Lett., 262(3–4):385–397. doi:10.1016/​j.epsl.2007.07.040

Trop, J.M., Ridgway, K.D., Manuszak, J.D., and Layer, P., 2002. Mesozoic sedimentary-basin development on the allochthonous Wrangellia composite terrane, Wrangell Mountains basin, Alaska: a long-term record of terrane migration and arc construction. Geol. Soc. Am. Bull., 114(6):693–717. doi:10.1130/​0016-7606(2002)114<0693:MSBDOT>2.0.CO;2

Tsuda, A., Kiyosawa, H., Kuwata, A., Mochizuki, M., Shiga, N., Saito, H., Chiba, S., Imai, K., Nishioka, J., and Ono, T., 2005. Responses of diatoms to iron-enrichment (SEEDS) in the western subarctic Pacific, temporal and special comparisons. Prog. Oceanogr., 64(2–4):189–205. doi:10.1016/j.pocean.2005.02.008

Vagnes, E., Faleide, J.I., and Gudlaugsson, S.T., 1992. Glacial erosion and tectonic uplift in the Barents Sea. Nor. Geol. Tidsskr. (1905–2000), 72(3):333–338.

Valet, J.-P., Meynadier, L., and Guyodo, Y., 2005. Geomagnetic dipole strength and reversal rate over the past two million years. Nature (London, U. K.), 435(7043):802–805. doi:10.1038/nature03674

von Huene, R., and Kulm, L.D., 1973. Tectonic summary of Leg 18. In Kulm, L.D., von Huene, R., et al., Init. Repts. DSDP, 18: Washington (U.S. Govt. Printing Office), 961–976. doi:10.2973/dsdp.proc.18.133.1973

von Huene, R., Larson, E., and Crouch, J., 1973. Preliminary study of ice-rafted erratics as indicators of glacial advances in the Gulf of Alaska. In Kulm, L.D., von Huene, R., et al., Init. Repts. DSDP, 18: Washington (U.S. Govt. Printing Office), 835–842. doi:10.2973/dsdp.proc.18.121.1973

Weingartner, T.J., Danielson, S.L., and Royer, T.C., 2005. Freshwater variability and predictability in the Alaska Coastal Current. Deep-Sea Res., Part II, 52(1–2):161–191. doi:10.1016/j.dsr2.2004.09.030

Whipple, K.X., 2009. The influence of climate on the tectonic evolution of mountain belts. Nat. Geosci., 2:97–104. doi:10.1038/ngeo413

Whipple, K.X., and Meade, B.J., 2004. Controls on the strength of coupling among climate, erosion, and deformation in two-sided, frictional orogenic wedges at steady state. J. Geophys. Res., [Earth Surface], 109:F01011–F01034. doi:10.1029/​2003JF000019

White, J.M., Ager, T.A., Adam, D.P., Leopold, E.B., Liu, G., Jetté, H., and Schweger, C.E., 1997. An 18 million year record of vegetation and climate change in northwestern Canada and Alaska: tectonic and global climatic correlates. Palaeogeogr., Palaeoclimatol., Palaeoecol., 130(1–4):293–306. doi:10.1016/S0031-0182(96)00146-0

Willems, B.A., 2009. Quaternary glacial and climatic history of southern Alaska using high-resolution seismic reflection records [Ph.D. dissert.]. Northern Illinois Univ., DeKalb.

Willett, S.D., 1999. Orogeny and orography: the effects of erosion on the structure of mountain belts. J. Geophys. Res., [Solid Earth], 104(B12):28957–28981. doi:10.1029/​1999JB900248

Willett, S.D., 2010. Late Neogene erosion of the Alps: a climate driver? Annu. Rev. Earth Planet. Sci., 38:411–437. doi:10.1146/​annurev-earth-040809-152543

Witmer, J.W., Ridgway, K.D., Enkelmann, E., Brennan, P., and Valencia, V.A., 2009. Deposition, provenance, and exhumation of Neogene strata at the syntaxis of the Chugach–St. Elias Range, southeast Alaska. Geol. Soc. Am. Abstr. Program, 41(7):306. http://​​gsa/​2009AM/​finalprogram/​abstract_165389.htm

Worthington, L., 2010. New geophysical parameters for understanding the evolution of the St. Elias orogen, southern Alaska [Ph.D. dissert]. Univ. Texas, Austin.

Worthington, L.L., Gulick, S.P.S., and Pavlis, T.L., 2008. Identifying active structures in the Kayak Island and Pamplona zones: implications for offshore tectonics of the Yakutat microplate, Gulf of Alaska. In Freymueller, J.T., Haeussler, P.J., Wesson, R.L., and Ekström, G. (Eds.), Active Tectonics and Seismic Potential of Alaska. Geophys. Monogr., 179:257–268.

Worthington, L.L, Gulick, S.P.S., and Pavlis, T.L., 2010. Coupled stratigraphic and structural evolution of a glaciated orogenic wedge, offshore St. Elias orogen, Alaska. Tectonics, 29:TC6013–TC6039. doi:10.1029/2010TC002723

Worthington, L.L., Gulick, S.P.S., van Avendonk, H.J., Christeson, G.L., and Pavlis, T.L, submitted. Crustal structure of the Yakutat terrane: new constraints for understanding the evolution of subduction and collision in southern Alaska. J. Geophys. Res.

Wu, J., Aguilar-lslas, A., Rember, R., Weingertner, T., Danielson, S., and Whitledge, T., 2009. Size-fractionated iron distribution on the northern Gulf of Alaska. Geophys. Res. Lett., 36:L11606. doi:10.1029/2009GL038304

Wu, X., Heflin, M.B., Schotman, H., Vermeersen, B.L.A., Dong, D., Gross, R.S., Ivins, E.R., Moore, A.W., and Owen, S.E., 2010. Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nat. Geosci., 3:642–646. doi:10.1038/​ngeo938

Yamazaki, T., and Oda, H., 2005. A geomagnetic paleointensity stack between 0.8 and 3.0 Ma from equatorial Pacific sediment cores. Geochem., Geophys., Geosyst., 6:Q11H20–Q11H43. doi:10.1029/2005GC001001

You, Y., Suginohara, N., Fukasawa, M., Yasuda, I., Kaneko, I., Yoritaka, H., and Kawamiya, M., 2000. Roles of the Okhotsk Sea and Gulf of Alaska in forming the North Pacific Intermediate Water. J. Geophys. Res., [Oceans], 105(C2):3253–3280. doi:10.1029/​1999JC900304

Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517):686–693. doi:10.1126/science.1059412

Zahn, R., Pedersen, T.F., Bornhold, B.D., and Mix, A.C., 1991. Water mass conversion in the glacial subarctic Pacific (54N, 148W): physical constraints and the benthic-planktonic stable isotope record. Paleoceanography, 6(5):543–560. doi:10.1029/​91PA01327

Zeitler, P.K., Meltzer, A.S., Koons, P.O., Craw, D., Hallet, B., Chamberlain, C.P., Kidd, W.S.F., Park, S.K., Seeber, L., Bishop, M., and Shroder, J., 2001. Erosion, Himalayan geodynamics, and the geomorphology of metamorphism. GSA Today, January 2001:4–9. doi:10.1130/​1052-5173(2001)011<0004:EHGATG>2.0.CO;2

Zellers, S.D., 1995. Foraminiferal sequence biostratigraphy and seismic stratigraphy of a tectonically active margin: the Yakataga Formation, northeastern Gulf of Alaska. Mar. Micropaleontol., 26(1–4):255–271. doi:10.1016/​0377-8398(95)00031-3

Zhang, P., Molnar, P., and Downs, W.R., 2001. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature (London, U. K.), 410:891–897. doi:10.1038/35073504