IODP Proceedings    Volume contents     Search
iodp logo

doi:10.2204/iodp.proc.311.106.2006

References

Aldred, W., Cook, J., Bern, P., Carpenter, B., Hutchinson, M., Lovell, J., Rezmer-Cooper, I., and Leder, P.C., 1998. Using downhole annular pressure measurements to improve drilling performance. Oilfield Rev., 10(4):40–55

Bohrmann, G., Greinert, J., Suess, E., and Torres, M., 1998. Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology, 26:647–650.

Chapman, N.R., Gettrust, J.F., Walia, R., Hannay, D., Spence, G.D., Wood, W.T., and Hyndman, R.D., 2002. High-resolution, deep-towed, multichannel seismic survey of deep-sea gas hydrates off western Canada. Geophysics, 67(4):1038–1047. doi:10.1190/1.1500364

Collett, T.S., 2000. Quantitative well-log analysis of in-situ natural gas hydrates [Ph.D. dissert.]. Colorado School of Mines, Golden.

Collett, T.S., and Ladd, J., 2000. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data. In Paull, C.K., Matsumoto, R., Wallace, P.J., and Dillon, W.P. (Eds.), Proc. ODP, Sci. Results, 164 [Online]. Available from World Wide Web:
 http://www-odp.tamu.edu/publications/164_SR/chap_19/ chap_19.htm.

Collett, T.S., Riedel, M., Malone, M.J., and the Expedition 311 Project Team, 2005. Cascadia margin hydrates. IODP Sci. Prosp., 311. doi:10.2204/iodp.sp.311.2005

Davis, E.E., Hyndman, R.D., and Villinger, H., 1990. Rates of fluid expulsion across the northern Cascadia accretionary prism: constraints from new heat flow and multichannel seismic reflection data. J. Geophys. Res., 95:8869–8889.

Doveton, J.H., 1994. Geologic log analysis using computer methods. AAPG Comp. Appl. Geol., 2:169.

Edwards, R.N., 1997. On the resource evaluation of marine gas hydrate deposits using sea-floor transient electric dipole-dipole method. Geophysics, 62:63–74. doi:10.1190/1.1444146

Fofonoff, N.P., 1985. Physical properties of seawater: a new salinity scale and equation of state for seawater. J. Geophys. Res., 90:3332–3342.

Guerin, G., and Goldberg, D., 2005. Modeling of acoustic wave dissipation in gas hydrate–bearing sediments. Geochem., Geophys., Geosyst., 6. doi:10.1029/2005GC000918

Guerin, G., Goldberg, D., and Meltser, A., 1999. Characterization of in situ elastic properties of gas-hydrate bearing sediments on the Blake Ridge. J. Geophys. Res., 104:17781–17796. doi:10.1029/1999JB900127

Hyndman, R.D., Yuan, T., and Moran, K., 1999. The concentration of deep sea gas hydrates from downhole electrical resistivity logs and laboratory data. Earth Planet. Sci. Lett., 172:167–177.
doi:10.1016/S0012-821X(99)00192-2

Lowe, C., Enkin, R.J., Baker, J., and Dallimore, S.R., 2005. Investigation of airborne magnetic data and magnetic properties of cored rocks from the Mallik gas hydrate field. In Dallimore, S.R., and Collett, T.S. (Eds.), Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. Bull.—Geol. Surv. Can., 585.

Lu, H., Moudrakovski, I., Riedel, M., Spence, G., Dutrisac, R., Ripmeester, J., Wright, F., and Dallimore, S., 2005. Occurrences and structural characterizations of gas hydrates associated with a cold vent field, offshore Vancouver Island. J. Geophys. Res., 110(B10):B10204. doi:10.1029/2005JB003900

Malinverno, A., and Briggs, V.A., 2004. Expanded uncertainty quantification in inverse problems: hierarchical bayes and empirical bayes. Geophysics, 69:100–1016. doi:10.1190/1.1778243

Medioli, B.E., Wilson, N., Dallimore, S.R., Paré, D., Brennan-Alpert, P., and Oda, H., 2005. Sedimentology of the cored interval, JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well. In Dallimore, S.R., and Collett, T.S. (Eds.), Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. Bull.—Geol. Surv. Can., 585.

Milkov, A.V., Claypool, G.E., Lee, Y.-J., and Sassen, R., 2005. Gas hydrate systems at Hydrate Ridge offshore Oregon inferred from molecular and isotopic properties of gas hydrate-bound and void gases. Geochim. Cosmochim. Acta, 69(4):1007–1026. doi:10.1016/j.gca.2004.08.021

Novosel, I., 2002. Physical properties of gas hydrate related sediments, offshore Vancouver Island [M.Sc. Thesis]. Univ. Victoria, Canada.

Novosel, I., Spence, G.D., and Hyndman, R.D., 2005. Reduced magnetization produced by increased methane flux at a gas hydrate vent. Mar. Geol., 216:265–274. doi:10.1016/j.margeo.2005.02.027

Pimmel, A., and Claypool, G., 2001. Introduction to shipboard organic geochemistry on the JOIDES Resolution. ODP Tech. Note, 30 [Online]. Available from World Wide Web:
http://www-odp.tamu.edu/publications/tnotes/tn30/INDEX.HTM

Riedel, M., 2001. 3D seismic investigations of northern Cascadia marine gas hydrates [Ph.D. dissert.]. Univ. Victoria, Canada.

Riedel, M., Novosel, I., Spence, G.D., Hyndman, R.D., Chapman, N.R., and Lewis, T., 2006. Geophysical and geochemical signatures associated with gas hydrate–related venting in the northern Cascadia margin. Geol. Soc. Am. Bull., 118:23–38. doi:10.1130/B25720.1

Riedel, M., Spence, G.D., Chapman, N.R., and Hyndman, R.D., 2001. Deep sea gas hydrates on the northern Cascadia margin. The Leading Edge, 20(1):87–91.

Riedel, M., Spence, G.D., Chapman, N.R., and Hyndman, R.D., 2002. Seismic investigations of a vent field associated with gas hydrates, offshore Vancouver Island. J. Geophys. Res., 107(B9):2200. doi:10.1029/2001JB000269

Schlumberger, 1989. Log Interpretation Principles/Applications: Houston (Schlumberger Educ. Services), SMP–7017.

Schwalenberg, K., Willoughby, E.C., Mir, R., and Edwards, R.N., 2005. Marine gas hydrate signatures in Cascadia and their correlation with seismic blank zones. First Break, 23:57–63.

Sloan, E.D., 1998. Clathrate Hydrates of Natural Gases (2nd ed.): New York (Marcel Dekker).

Solem, R.C., Spence, G.D., Vukajlovich, D., Hyndman, R.D., Riedel, M., Novosel, I., and Kastner, M., 2002. Methane advection and gas hydrate formation within an active vent field offshore Vancouver Island. Fourth Int. Conf. Gas Hydrates, 19023.

Teichert, B.M.A., Gussone, N., Eisenhauer, A., and Bohrmann, G., 2005. Clathrites: archives of near-seafloor pore-fluid evolution (44/40Ca, 13C, 18O) in gas hydrate environments. Geology, 33:213–216. doi:10.1130/G21317.1

Tréhu, A.M, Bohrmann, G., Rack, F.R., Torres, M.E., et al., 2003. Proc. ODP, Init. Repts., 204 [Online]. Available from World Wide Web:
http://www-odp.tamu.edu/publications/204_IR/204ir.htm.

Tréhu, A.M., Long, P.E., Torres, M.E., Bohrmann, G., Rack, F.R., Collett, T.S., Goldberg, D.S., Milkov, A.V., Riedel, M., Schultheiss, P., Bangs, N.L., Barr, S.R., Borowski, W.S., Claypool, G.E., Delwiche, M.E., Dickens, G.R., Gracia, E., Guerin, G., Holland, M., Johnson, J.E., Lee, Y.-J., Liu, C.-S., Su, X., Teichert, B., Tomaru, H., Vanneste, M., Watanabe, M., and Weinberger, J.L., 2004. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204. Earth Planet. Sci. Lett., 222:845–862. doi:10.1016/j.epsl.2004.03.035

Ussler, W., III, Paull, C.K., McGill, P., Schroeder, D., and Ferrell, D., 2006. A test of the temperature, pressure, and conductivity tool prototype at Hydrate Ridge. In Tréhu, A.M., Bohrmann, G., Torres, M.E., and Colwell, F.S. (Eds.), Proc. ODP, Sci. Results, 204 [Online]. Available from World Wide Web: http://www-odp.tamu.edu/publications/204_SR/112/112.htm.

Westbrook, G.K., Carson, B., Musgrave, R.J., et al., 1994. Proc. ODP, Init. Repts., 146 (Pt. 1): College Station, TX (Ocean Drilling Program).

Willoughby, E.C., and Edwards, R.N., 2000. Shear velocities in Cascadia from seafloor compliance measurements. Geophys. Res. Lett., 27:1021–1024. doi:10.1029/1999GL010481

Willoughby, E.C., Schwalenberg, K., Edwards, R.N., Spence, G.D., and Hyndman, R.D., 2005. Assessment of marine gas hydrate deposits: a comparative study of seismic, electromagnetic and seafloor compliance methods. Fifth Int. Conf. Gas Hydrates, 3:802–811.

Wood, W.T., Gettrust, J.F., Chapman, N.R., Spence, G.D., and Hyndman, R.D., 2002. Decreased stability of methane hydrates in marine sediments owing to phase-boundary roughness. Nature (London, U. K.), 420:656–660. doi:10.1038/nature01263

Wood, W.T., Lindwall, D.A., Gettrust, J.F., Sekharan, K.K., and Golden, B., 2000. Constraints on gas or gas hydrate related wipeouts in seismic data through the use of physical models. Eos, Trans., Am. Geophys. Union, 81(48):F639.

Xu, W., 2002. Phase balance and dynamic equilibrium during formation and dissociation of methane gas hydrate. Fourth Int. Conf. Gas Hydrates: 19023:199–200.

Xu, W., 2004. Modeling dynamic marine gas hydrate systems. Am. Mineral., 89:1271–1279.

Yuan, J., and Edwards, R.N., 2000. The assessment of marine gas hydrates through electrical remove sounding: hydrate without a BSR?, Geophys. Res. Lett., 27:2397–2400. doi:10.1029/2000GL011585

Zühlsdorff, L., and Spiess, V., 2004. Three-dimensional seismic characterization of a venting site reveals compelling indications of natural hydraulic fracturing. Geology, 32(2):101–104. doi:10.1130/G19993.1