Proceedings of the
International Ocean Discovery Program
Volume 367/368
South China Sea Rifted Margin
Expeditions 367 and 368 of the riserless drilling platform
from and to Hong Kong, China
Sites U1499–U1500
7 February–9 April 2017
and
Hong Kong, China, to Shanghai, China
Sites U1501–U1505
9 April–11 June 2017
and
Expedition 368X of the riserless drilling platform
from and to Hong Kong, China
Return to Site U1503
15 November–8 December 2018
Volume authorship
Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists
Published by
International Ocean Discovery Program
Publisher’s notes
This publication was prepared by the JOIDES Resolution Science Operator (JRSO) at Texas A&M University (TAMU) as an account of work performed under the International Ocean Discovery Program (IODP). Funding for IODP is provided by the following international partners:
- National Science Foundation (NSF), United States
- Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
- European Consortium for Ocean Research Drilling (ECORD)
- Ministry of Science and Technology (MOST), People’s Republic of China
- Korea Institute of Geoscience and Mineral Resources (KIGAM)
- Australia-New Zealand IODP Consortium (ANZIC)
- Ministry of Earth Sciences (MoES), India
- Coordination for Improvement of Higher Education Personnel (CAPES), Brazil
Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the participating agencies, TAMU, or Texas A&M Research Foundation.
The bulk of the shipboard-collected core data from this expedition is accessible at https://zenodo.org/
A complete set of the logging data collected during the expedition is available at http://mlp.ldeo.columbia.edu/logdb/scientific_ocean_drilling. If you have problems downloading the data, wish to receive additional logging data, or have questions regarding the data, please contact Database Administrator, Borehole Research Group, Lamont-Doherty Earth Observatory of Columbia University, PO Box 1000, 61 Route 9W, Palisades NY 10964, USA. Tel: (845) 365-8343; Fax: (845) 365-3182; Email: logdb@ldeo.columbia.edu.
Supplemental data were provided by the authors and may not conform to IODP publication formats.
JRSO expedition photos are the property of IODP and are public access.
Some core photographs have been tonally enhanced to better illustrate particular features of interest. High-resolution images are available upon request.
Cover photograph shows the R/V JOIDES Resolution on site in the South China Sea during Expedition 368. Photo credit: Shuhao Xie and IODP JRSO.
Copyright
Except where otherwise noted, this work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license (https://creativecommons.org/
Examples of how to cite this volume or part of this volume are available at http://publications.iodp.org/proceedings/367_368/367368title.html#bib.
ISSN
Volume DOI
https://doi.org/10.14379/iodp.proc.367368.2018
Publication date
Contents
Expedition reports
Chapters
Expedition 367/368 summary
H.C. Larsen et al.
HTML
PDF
Download figures
Download tables
Cited by
Expedition 367/368 methods
Z. Sun et al.
HTML
PDF
Download figures
Download tables
Cited by
Site U1499
Z. Sun et al.
HTML
PDF
Download figures
Download tables
Cited by
Site U1500
J.M. Stock et al.
HTML
PDF
Download figures
Download tables
Cited by
Site U1501
H.C. Larsen et al.
HTML
PDF
Download figures
Download tables
Cited by
Site U1502
H.C. Larsen et al.
HTML
PDF
Download figures
Download tables
Cited by
Site U1503
H.C. Larsen et al.
HTML
PDF
Download figures
Download tables
Cited by
Site U1504
H.C. Larsen et al.
HTML
PDF
Download figures
Download tables
Cited by
Site U1505
Z. Jian et al.
HTML
PDF
Download figures
Download tables
Cited by
Expedition 368X summary
L.B. Childress et al.
HTML
PDF
Download figures
Download table
Cited by
Expedition 368X methods supplement
L.B. Childress et al.
HTML
PDF
Download figures
Download tables
Cited by
Return to Site U1503
L.B. Childress et al.
HTML
PDF
Download figures
Download tables
Cited by
Core descriptions
Visual core descriptions (VCDs) are presented in PDF files for each site. Smear slides and/or thin sections are presented in PDF and/or CSV files for each site and/or hole (CSV files are available in the CORES directory). The entire set of core images in PDF is available in the IMAGES directory.
Expeditions 367/368
Site U1499
Visual core descriptions · Smear slides · Thin sections
Site U1500
Visual core descriptions · Smear slides · Thin sections
Site U1501
Visual core descriptions · Smear slides · Thin sections
Site U1502
Visual core descriptions · Smear slides · Thin sections
Site U1503
Visual core descriptions
Site U1504
Visual core descriptions · Smear slides · Thin sections
Site U1505
Visual core descriptions · Smear slides
Expedition 368X
Return to Site U1503
Visual core descriptions · Smear slides · Thin sections
Supplementary material
Supplementary material for the Volume 367/368 expedition reports includes DESClogik workbooks and X-ray diffraction data in Microsoft Excel format, an original seismic section figure in PDF and Adobe Illustrator format, downhole measurement data in PDF, captions in Microsoft Word format, and handdrawn barrel sheets in PDF. A full list of directories can be found in SUPP_MAT in the volume zip folder or on the Supplementary material for Volume 367/368 expedition reports web page.
Expedition research results
Data reports
Data report: major and trace element and Nd-Pb-Hf isotope composition of the Site U1504 metamorphic basement in the South China Sea (IODP Expedition 367/368/368X)
Susanne M. Straub, Soumen Mallick, Arturo Gomez-Tuena, and Michael J. Dorais
HTML
PDF
Download figures
Download tables
Cited by
Data report: major and trace element and Sr-Nd-Pb-Hf isotope composition of three granite clasts from Hole U1501D in the South China Sea (IODP Expedition 367/368/368X
Susanne M. Straub, Arturo Gomez-Tuena, and Michael J. Dorais
HTML
PDF
Download figures
Download tables
Cited by
Data report: marine tephra compositions in the deep drilling cores of the South China Sea, IODP Expeditions 349 and 367/368
J.C. Schindlbeck-Belo, Kelsie Dadd, Kuo-Lung Wang, and Hao-Yang Lee
HTML
PDF
Download figures
Supplementary material
Cited by
Drilling location maps
A site map showing the drilling locations for this expedition and maps showing the drilling locations of all International Ocean Discovery Program (IODP) expeditions, produced using QGIS (http://www.qgis.org), and all Integrated Ocean Drilling Program, Ocean Drilling Program (ODP), and Deep Sea Drilling Project (DSDP) expeditions, produced using Generic Mapping Tools (GMT) of Paul Wessel and Walter H.F. Smith (http://gmt.soest.hawaii.edu), are available in PDF.
IODP Expedition 367/368 site map
IODP map (Expeditions 349–357, 359–368, and 370)
Integrated Ocean Drilling Program map (Expeditions 301–348)
ODP map (Legs 100–210)
DSDP map (Legs 1–96)
Dedication
We dedicate this volume to our good friend and colleague Dr. Kirk D. McIntosh who passed away during Expedition 368 at the age of 59. Those who worked closely with Kirk on the years-long preparations for the South China Sea expeditions learned to know him as a person of the finest qualities. His prior work in the region was crucial to the scientific foundation of the project, and the rigor that he applied in processing and interpreting the seismic data greatly helped to shape our final drilling plans. His treatment for leukemia prevented him from sailing with us, but he remained engaged in our discussions even as we sailed. We were devastated by the news of his sudden death. His contributions will not be forgotten. Photo credit: David Stephens, Bureau of Economic Geology, University of Texas at Austin.
Acknowledgments
Complementary Project Proposal (CPP) Expeditions 367 and 368 received generous funding from the Ministry of Science and Technology (MOST; China). We are grateful to the China National Offshore Oil Corporation (CNOOC) for their powerful support with the regional deep crustal seismic data on which the entire project builds and to the Guangzhou Marine Geological Survey (GMGS) for releasing high-resolution bathymetry data from around the drilling sites. The success of the expeditions, from proposal preparation to the supporting work related to the expeditions, greatly benefited from support by the IODP-China office and the major research program “The South China Sea Deep” (2011–2018) funded by the National Natural Science Foundation of China (NSFC). We express our most sincere thanks to Professor Pinxian Wang, who made it possible to develop the proposal into two CPP expeditions. Professor Chunfeng Li is also greatly appreciated for his contributions to proposal preparation and partial data support.
Foreword
The International Ocean Discovery Program (IODP) represents the latest incarnation of almost five decades of scientific ocean drilling excellence and is generally accepted as the most successful international collaboration in the history of the Earth sciences. IODP builds seamlessly on the accomplishments of previous phases: the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program. The 2013–2023 IODP Science Plan (Illuminating Earth’s Past, Present, and Future) defines four themes and thirteen challenges for this decade of scientific ocean drilling that are both of fundamental importance in understanding how the Earth works and of significant relevance to society as the Earth changes, at least in part in response to anthropogenic forcing. This phase of IODP represents a renewed level of international collaboration in bringing diverse drilling platforms and strategies to increasing our understanding of climate and ocean change, the deep biosphere and evolution of ecosystems, connections between Earth’s deep processes and surface manifestations, and geologically induced hazards on human timeframes.
The Proceedings of the International Ocean Discovery Program presents the scientific and engineering results of IODP drilling projects, expedition by expedition. As in the preceding Integrated Ocean Drilling Program, expeditions in the new IODP are conducted by three implementing organizations, each providing a different drilling capability. These are the US Implementing Organization (USIO; through September 2014) and the JOIDES Resolution Science Operator (JRSO; as of October 2014), providing the leased commercial vessel JOIDES Resolution for riserless drilling operations; JAMSTEC’s Center for Deep Earth Exploration (CDEX), providing the drillship Chikyu for riser and occasional riserless operations; and the European Consortium for Ocean Research Drilling (ECORD) Science Operator (ESO), providing “mission-specific” platforms (MSPs) for expeditions that extend the IODP operational range where neither drillship is suitable, for example, in polar environments and in shallow waters. Scheduling decisions for each capability are made by three independent Facility Boards, each of which includes scientists, operators, and platform funding partners: the JOIDES Resolution Facility Board (JRFB), Chikyu IODP Board (CIB), and ECORD Facility Board (EFB). At the beginning of the new IODP, the three Facility Boards agreed to utilize Publication Services at the USIO and now the JRSO for production of all expedition Proceedings volumes and reports.
The new IODP differs from prior scientific ocean drilling programs in that it has neither a central management organization nor commingled funding for program-wide activities. Yet this phase of IODP retains a fundamental integrative structural element: a “bottom-up” evaluation of all proposals for drilling expeditions by a single advisory structure composed of scientists representing all international program partners. International scientists may submit drilling proposals to the Science Support Office; all submitted proposals are then evaluated by a Science Evaluation Panel in the context of the Science Plan.
The new IODP also has a second internationally integrative level for high-level discussion and consensus-building: the IODP Forum. The Forum is charged with assessing program-wide progress toward achieving the Science Plan. At present, IODP involves 26 international financial partners, including the United States, Japan, an Australia/New Zealand consortium (ANZIC), Brazil, China, India, South Korea, and the eighteen members of ECORD (Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Israel, Italy, the Netherlands, Norway, Poland, Portugal, Spain, Sweden, Switzerland, and the United Kingdom). This enhanced membership in the new IODP represents a remarkable level of international collaboration that remains one of the greatest ongoing strengths of scientific ocean drilling.
James A. Austin Jr
Chair, IODP Forum
Reviewers for this volume
Pengyuan Guo
Kathleen Marsaglia
Christian Tegner
International Ocean Discovery Program
JOIDES Resolution Science Operator
Website: http://iodp.tamu.edu
IODP JRSO
International Ocean Discovery Program
Tel: (979) 845-2673; Fax: (979) 845-4857
Email: information@iodp.tamu.edu
IODP JRSO Curation and Laboratories
IODP Gulf Coast Repository (GCR)
Tel: (979) 845-8490; Fax: (979) 845-1303
Email: curator@iodp.tamu.edu
European Consortium for Ocean Research Drilling, Science Operator (ESO)
Website: http://www.ecord.org
IODP ESO Coordinator: Science, Logistics, and Operations
Tel: (44) 131-667-1000; Fax: (44) 131-668-4140
Email: eso@bgs.ac.uk
IODP ESO Petrophysics
European Petrophysics Consortium
Tel: (44) 116-252-3611; Fax: (44) 116-252-3918
Email: sjd27@leicester.ac.uk
IODP ESO Curation and Laboratories
IODP Bremen Core Repository (BCR)
Center for Marine Environmental Sciences (MARUM)
Tel: (49) 421-218-65560; Fax: (49) 421-218-98-65560
Email: bcr@marum.de
Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
Website: http://www.jamstec.go.jp/chikyu/e
IODP Japan Science Operator
Center for Deep Earth Exploration (CDEX)
Japan Agency for Marine-Earth Science and Technology
Yokohama Institute for Earth Sciences
Tel: (81) 45-778-5643; Fax: (81) 45-778-5704
Email: cdex@jamstec.go.jp
IODP Japan Curation and Laboratories
IODP Kochi Institute for Core Sample Research (KCC)
Japan Agency for Marine-Earth Science and Technology
Tel: (81) 88-864-6705; Fax: (81) 88-878-2192
Email: kcc.contact@jamstec.go.jp
Expedition 367/368/368X participants*
Expedition 367 scientists
CAS Key Laboratory of Ocean and Marginal Sea Geology
South China Sea Institute of Oceanology
Division of Geological and Planetary Sciences
California Institute of Technology
Expedition Project Manager/Staff Scientist
International Ocean Discovery Program
Petrophysics (Physical Properties) Specialist
Università degli Studi di Padova
Petrophysics (Physical Properties) Specialist
Centre National de la Recherche Scientifique
Guangzhou Institute of Geochemistry
Department of Geological Sciences
Division of Geological and Planetary Sciences
California Institute of Technology
Present affiliation (20 September 2017):
Shell International Exploration and Production
International Ocean Discovery Program
Japan Agency for Marine-Earth Science and Technology
Guangzhou Institute of Geochemistry
Petrophysics (Physical Properties) Specialist
College of Marine Science and Technology
China University of Geosciences in Wuhan
State Key Laboratory of Marine Geology
State Key Laboratory of Marine Geology
University of South Florida, Tampa
Department of Earth and Environmental Sciences
Università degli Studi di Pavia
Institut de Physique du Globe de Strasbourg
Present affiliation (20 September 2017):
Laboratoire Géosciences et Environnement Cergy (GEC)
Maison Internationale de la Recherche
michael.nirrengarten@u-cergy.fr
Petrophysics (Physical Properties) Specialist
Institute for Marine and Antarctic Studies (IMAS)
California State University, Sacramento
CAS Key Laboratory of Ocean and Marginal Sea Geology
South China Sea Institute of Oceanology, Chinese Academy of Sciences
CAS Key Laboratory of Ocean and Marginal Sea Geology
South China Sea Institute of Oceanology, Chinese Academy of Sciences
Petrophysics (Physical Properties) Specialist
Department of Marine Geophysics
National Centre for Antarctic and Ocean Research (NCAOR)
State Key Laboratory of Marine Geology
CAS Key Laboratory of Ocean and Marginal Sea Geology
South China Sea Institute of Oceanology, Chinese Academy of Sciences
Petrophysics (Physical Properties) Specialist
CAS Key Laboratory of Ocean and Marginal Sea Geology
South China Sea Institute of Oceanology, Chinese Academy of Sciences
Department of Earth and Atmospheric Sciences
Department of Geology and Geophysics
Woods Hole Oceanographic Institution
Present affiliation (20 September 2017):
Department of Geology and Geophysics
Max Planck Institute for Chemistry
Expedition 367 observer
Expedition 367 education and outreach
Liceo Classico “F. Stabili - E. Trebbiani” Ascoli Piceno
School of Science and Technology
Expedition 368 scientists
School of Ocean and Earth Science
Geological Survey of Denmark and Greenland
Expedition Project Manager/Staff Scientist
International Ocean Discovery Program
Petrophysics (Physical Properties) Specialist
Petroleum & Marine Research Division
Korea Institute of Geoscience and Mineral Resources (KIGAM)
Key Laboratory of Submarine Geoscience
Second Institute of Oceanography (SIO), State Oceanic Administration (SOA)
Southern Illinois University at Carbondale
Present affiliation (11 September 2018):
University of Louisiana at Lafayette
Institute for Geosciences, Universidade Federal Fluminense (UFF), Brazil
Ministry of Education of Brazil
Earth and Atmospheric Sciences
University of Nebraska, Lincoln
Petrophysics (Physical Properties) Specialist
School of Ocean and Earth Science
College of Life Science and Technology
State Key Laboratory of Marine Geology
Petrologist/Structural Geologist
GEOMAR Helmholtz Center for Ocean Research Kiel
Christian-Albrechts-Universität zu Kiel
Department of Micropalaeontology
Nanjing Institute of Geology and Palaeontology
School of Geographical and Oceanographical Sciences
Petrophysics (Physical Properties) Specialist
Department of Geology and Geophysics
Woods Hole Oceanographic Institution
Department of Geology and Geophysics
School of Ocean and Earth Science
Petrologist/Structural Geologist
Laboratoire Géosciences et Environnement Cergy (GEC)
Maison Internationale de la Recherche
Petrophysics (Physical Properties) Specialist
Department of Marine Geophysics
National Centre for Antarctic and Ocean Research (NCAOR)
Petrophysics (Physical Properties) Specialist
Graduate School of Science and Technology for Innovation, Yamaguchi University
Earth & Environmental Sciences
Petrophysics (Physical Properties) Specialist
Department of Geology and Geophysics
Petrophysics (Physical Properties) Specialist
Key Laboratory of Marginal Sea Geology
Department of Engineering and Geology
GEOMAR Helmholtz Center for Ocean Research Kiel
Present affiliation (20 September 2017):
Julie.Schindlbeck@geow.uni-heidelberg.de
Lamont-Doherty Earth Observatory
Institute of Deep-sea Science and Engineering
Christian Albrechts University Kiel
China University of Geosciences
School of Ocean and Earth Science
Expedition 368 observers
National Applied Research Laboratories (NARLabs)
Taiwan Ocean Research Institute (TORI)
Expedition 368 education and outreach
Expedition 368X shipboard scientists
Expedition Project Manager/Staff Scientist
International Ocean Discovery Program
Petrophysics (Physical Properties/Downhole Measurements) Specialist
Geosciences Environnement Toulouse
Centre National de la Recherche Scientifique (CNRS)
Petrophysics (Physical Properties/Downhole Measurements) Specialist/Observer
Taiwan Ocean Research Institute
National Applied Research Laboratories
Petrophysics (Physical Properties/Downhole Measurements) Specialist
Department of Geology and Geophysics
Woods Hole Oceanographic Institution
Laboratoire Géosciences et Environnement de Cergy-Pontoise
Maison International de la Recherche
michael.nirrengarten@u-cergy.fr
Petrophysics (Physical Properties/Downhole Measurements) Specialist
Key Laboratory of Marginal Sea Geology
Department of Engineering and Geology
CAS Key Laboratory of Marginal Sea Geology
South China Sea Institute of Oceanology
State Key Laboratory of Marine Geology
Expedition 368X shore-based scientists
Expedition Project Manager/Staff Scientist
International Ocean Discovery Program
International Ocean Discovery Program
Centre National de la Recherche Scientifique
International Ocean Discovery Program
Guangzhou Institute of Geochemistry
Department of Micropaleontology
Nanjing Institute of Geology and Palaeontology
Department of Geology and Geophysics
Woods Hole Oceanographic Institution
School of Ocean and Earth Science
State Key Laboratory of Marine Geology
Earth & Environmental Sciences
Key Laboratory of Marginal Sea Geology
CAS Key Laboratory of Ocean and Marginal Sea Geology
South China Sea Institute of Oceanology
Christian Albrechts University Kiel
CAS Key Laboratory of Ocean and Marginal Sea Geology
South China Sea Institute of Oceanology
*Affiliations at time of expedition, except where updated by participants.Operational and technical staff
SIEM Offshore AS officials
Expedition 367
Expedition 368
Expedition 368X
JRSO shipboard personnel and technical representatives
Expedition 367
Marine Instrumentation Specialist
Physical Properties Laboratory
Marine Instrumentation Specialist
Underway Geophysics Laboratory/Downhole Tools Laboratory
Expedition 368
Underway Geophysics Laboratory
Physical Properties Laboratory
Marine Instrumentation Specialist
Marine Instrumentation Specialist
Expedition 368X
Physical Properties Laboratory
Physical Properties Laboratory
Marine Instrumentation Specialist
Paleomagnetism/Physical Properties Laboratory
Physical Properties Laboratory
Marine Instrumentation Specialist
IODP Publication Services staff*
Supervisor of Production and Graphics
Manager of Publication Services
*At time of publication.Expedition-related bibliography*
Citation data for IODP publications and journal articles in RIS format
IODP publications
Scientific Prospectus
Sun, Z., Stock, J., Jian, Z., McIntosh, K., Alvarez-Zarikian, C.A., and Klaus, A., 2016. Expedition 367/368 Scientific Prospectus: South China Sea Rifted Margin. International Ocean Discovery Program. https://doi.org/
Sun, Z., Stock, J., Jian, Z., Larsen, H.-C., Alvarez Zarikian, C.A., and Klaus, A., 2016. Expedition 367/368 Scientific Prospectus Addendum: South China Sea Rifted Margin. International Ocean Discovery Program. https://doi.org/
Preliminary Report
Sun, Z., Stock, J., Klaus, A., and the Expedition 367 Scientists, 2018. Expedition 367 Preliminary Report: South China Sea Rifted Margin. International Ocean Discovery Program. https://doi.org/
Jian, Z., Larsen, H.C., Alvarez Zarikian, C.A., and the Expedition 368 Scientists, 2018. Expedition 368 Preliminary Report: South China Sea Rifted Margin. International Ocean Discovery Program. https://doi.org/
Childress, L., and the Expedition 368X Scientists, 2019. Expedition 368X Preliminary Report: South China Sea Rifted Margin. International Ocean Discovery Program. https://doi.org/
Proceedings volume
Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists, 2018. South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program). https://doi.org/
Expedition reports
Larsen, H.C., Sun, Z., Stock, J.M., Jian, Z., Alvarez Zarikian, C.A., Klaus, A., Boaga, J., Bowden, S.A., Briais, A., Chen, Y., Cukur, D., Dadd, K.A., Ding, W., Dorais, M.J., Ferré, E.C., Ferreira, F., Furusawa, A., Gewecke, A.J., Hinojosa, J.L., Höfig, T.W., Hsiung, K.-H., Huang, B., Huang, E., Huang, X.-L., Jiang, S., Jin, H., Johnson, B.G., Kurzawski, R.M., Lei, C., Li, B., Li, L., Li, Y., Lin, J., Liu, C., Liu, C., Liu, Z., Luna, A., Lupi, C., McCarthy, A.J., Mohn, G., Ningthoujam, L.S., Nirrengarten, M., Osono, N., Peate, D.W., Persaud, P., Qiu, N., Robinson, C.M., Satolli, S., Sauermilch, I., Schindlbeck, J.C., Skinner, S.M., Straub, S.M., Su, X., Tian, L., van der Zwan, F.M., Wan, S., Wu, H., Xiang, R., Yadav, R., Yi, L., Zhang, C., Zhang, J., Zhang, Y., Zhao, N., Zhong, G., and Zhong, L., 2018. Expedition 367/368 summary. In Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists, South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program). https://doi.org/
Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., Boaga, J., Bowden, S.A., Briais, A., Chen, Y., Cukur, D., Dadd, K.A., Ding, W., Dorais, M.J., Ferré, E.C., Ferreira, F., Furusawa, A., Gewecke, A.J., Hinojosa, J.L., Höfig, T.W., Hsiung, K.-H., Huang, B., Huang, E., Huang, X.-L., Jiang, S., Jin, H., Johnson, B.G., Kurzawski, R.M., Lei, C., Li, B., Li, L., Li, Y., Lin, J., Liu, C., Liu, C., Liu, Z., Luna, A., Lupi, C., McCarthy, A.J., Mohn, G., Ningthoujam, L.S., Nirrengarten, M., Osono, N., Peate, D.W., Persaud, P., Qiu, N., Robinson, C.M., Satolli, S., Sauermilch, I., Schindlbeck, J.C., Skinner, S.M., Straub, S.M., Su, X., Tian, L., van der Zwan, F.M., Wan, S., Wu, H., Xiang, R., Yadav, R., Yi, L., Zhang, C., Zhang, J., Zhang, Y., Zhao, N., Zhong, G., and Zhong, L., 2018. Expedition 367/368 methods. In Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists, South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program). https://doi.org/
Sun, Z., Stock, J.M., Klaus, A., Larsen, H.C., Jian, Z., Alvarez Zarikian, C.A., Boaga, J., Bowden, S.A., Briais, A., Chen, Y., Cukur, D., Dadd, K.A., Ding, W., Dorais, M.J., Ferré, E.C., Ferreira, F., Furusawa, A., Gewecke, A.J., Hinojosa, J.L., Höfig, T.W., Hsiung, K.-H., Huang, B., Huang, E., Huang, X.-L., Jiang, S., Jin, H., Johnson, B.G., Kurzawski, R.M., Lei, C., Li, B., Li, L., Li, Y., Lin, J., Liu, C., Liu, C., Liu, Z., Luna, A., Lupi, C., McCarthy, A.J., Mohn, G., Ningthoujam, L.S., Nirrengarten, M., Osono, N., Peate, D.W., Persaud, P., Qiu, N., Robinson, C.M., Satolli, S., Sauermilch, I., Schindlbeck, J.C., Skinner, S.M., Straub, S.M., Su, X., Tian, L., van der Zwan, F.M., Wan, S., Wu, H., Xiang, R., Yadav, R., Yi, L., Zhang, C., Zhang, J., Zhang, Y., Zhao, N., Zhong, G., and Zhong, L., 2018. Site U1499. In Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists, South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program). https://doi.org/
Stock, J.M., Sun, Z., Klaus, A., Larsen, H.C., Jian, Z., Alvarez Zarikian, C.A., Boaga, J., Bowden, S.A., Briais, A., Chen, Y., Cukur, D., Dadd, K.A., Ding, W., Dorais, M.J., Ferré, E.C., Ferreira, F., Furusawa, A., Gewecke, A.J., Hinojosa, J.L., Höfig, T.W., Hsiung, K.-H., Huang, B., Huang, E., Huang, X.-L., Jiang, S., Jin, H., Johnson, B.G., Kurzawski, R.M., Lei, C., Li, B., Li, L., Li, Y., Lin, J., Liu, C., Liu, C., Liu, Z., Luna, A., Lupi, C., McCarthy, A.J., Mohn, G., Ningthoujam, L.S., Nirrengarten, M., Osono, N., Peate, D.W., Persaud, P., Qiu, N., Robinson, C.M., Satolli, S., Sauermilch, I., Schindlbeck, J.C., Skinner, S.M., Straub, S.M., Su, X., Tian, L., van der Zwan, F.M., Wan, S., Wu, H., Xiang, R., Yadav, R., Yi, L., Zhang, C., Zhang, J., Zhang, Y., Zhao, N., Zhong, G., and Zhong, L., 2018. Site U1500. In Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists, South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program). https://doi.org/
Larsen, H.C., Jian, Z., Alvarez Zarikian, C.A., Sun, Z., Stock, J.M., Klaus, A., Boaga, J., Bowden, S.A., Briais, A., Chen, Y., Cukur, D., Dadd, K.A., Ding, W., Dorais, M.J., Ferré, E.C., Ferreira, F., Furusawa, A., Gewecke, A.J., Hinojosa, J.L., Höfig, T.W., Hsiung, K.-H., Huang, B., Huang, E., Huang, X.-L., Jiang, S., Jin, H., Johnson, B.G., Kurzawski, R.M., Lei, C., Li, B., Li, L., Li, Y., Lin, J., Liu, C., Liu, C., Liu, Z., Luna, A., Lupi, C., McCarthy, A.J., Mohn, G., Ningthoujam, L.S., Nirrengarten, M., Osono, N., Peate, D.W., Persaud, P., Qiu, N., Robinson, C.M., Satolli, S., Sauermilch, I., Schindlbeck, J.C., Skinner, S.M., Straub, S.M., Su, X., Tian, L., van der Zwan, F.M., Wan, S., Wu, H., Xiang, R., Yadav, R., Yi, L., Zhang, C., Zhang, J., Zhang, Y., Zhao, N., Zhong, G., and Zhong, L., 2018. Site U1501. In Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists, South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program). https://doi.org/
Larsen, H.C., Jian, Z., Alvarez Zarikian, C.A., Sun, Z., Stock, J.M., Klaus, A., Boaga, J., Bowden, S.A., Briais, A., Chen, Y., Cukur, D., Dadd, K.A., Ding, W., Dorais, M.J., Ferré, E.C., Ferreira, F., Furusawa, A., Gewecke, A.J., Hinojosa, J.L., Höfig, T.W., Hsiung, K.-H., Huang, B., Huang, E., Huang, X.-L., Jiang, S., Jin, H., Johnson, B.G., Kurzawski, R.M., Lei, C., Li, B., Li, L., Li, Y., Lin, J., Liu, C., Liu, C., Liu, Z., Luna, A., Lupi, C., McCarthy, A.J., Mohn, G., Ningthoujam, L.S., Nirrengarten, M., Osono, N., Peate, D.W., Persaud, P., Qiu, N., Robinson, C.M., Satolli, S., Sauermilch, I., Schindlbeck, J.C., Skinner, S.M., Straub, S.M., Su, X., Tian, L., van der Zwan, F.M., Wan, S., Wu, H., Xiang, R., Yadav, R., Yi, L., Zhang, C., Zhang, J., Zhang, Y., Zhao, N., Zhong, G., and Zhong, L., 2018. Site U1502. In Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists, South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program). https://doi.org/
Larsen, H.C., Jian, Z., Alvarez Zarikian, C.A., Sun, Z., Stock, J.M., Klaus, A., Boaga, J., Bowden, S.A., Briais, A., Chen, Y., Cukur, D., Dadd, K.A., Ding, W., Dorais, M.J., Ferré, E.C., Ferreira, F., Furusawa, A., Gewecke, A.J., Hinojosa, J.L., Höfig, T.W., Hsiung, K.-H., Huang, B., Huang, E., Huang, X.-L., Jiang, S., Jin, H., Johnson, B.G., Kurzawski, R.M., Lei, C., Li, B., Li, L., Li, Y., Lin, J., Liu, C., Liu, C., Liu, Z., Luna, A., Lupi, C., McCarthy, A.J., Mohn, G., Ningthoujam, L.S., Nirrengarten, M., Osono, N., Peate, D.W., Persaud, P., Qiu, N., Robinson, C.M., Satolli, S., Sauermilch, I., Schindlbeck, J.C., Skinner, S.M., Straub, S.M., Su, X., Tian, L., van der Zwan, F.M., Wan, S., Wu, H., Xiang, R., Yadav, R., Yi, L., Zhang, C., Zhang, J., Zhang, Y., Zhao, N., Zhong, G., and Zhong, L., 2018. Site U1503. In Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists, South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program). https://doi.org/
Larsen, H.C., Jian, Z., Alvarez Zarikian, C.A., Sun, Z., Stock, J.M., Klaus, A., Boaga, J., Bowden, S.A., Briais, A., Chen, Y., Cukur, D., Dadd, K.A., Ding, W., Dorais, M.J., Ferré, E.C., Ferreira, F., Furusawa, A., Gewecke, A.J., Hinojosa, J.L., Höfig, T.W., Hsiung, K.-H., Huang, B., Huang, E., Huang, X.-L., Jiang, S., Jin, H., Johnson, B.G., Kurzawski, R.M., Lei, C., Li, B., Li, L., Li, Y., Lin, J., Liu, C., Liu, C., Liu, Z., Luna, A., Lupi, C., McCarthy, A.J., Mohn, G., Ningthoujam, L.S., Nirrengarten, M., Osono, N., Peate, D.W., Persaud, P., Qiu, N., Robinson, C.M., Satolli, S., Sauermilch, I., Schindlbeck, J.C., Skinner, S.M., Straub, S.M., Su, X., Tian, L., van der Zwan, F.M., Wan, S., Wu, H., Xiang, R., Yadav, R., Yi, L., Zhang, C., Zhang, J., Zhang, Y., Zhao, N., Zhong, G., and Zhong, L., 2018. Site U1504. In Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists, South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program). https://doi.org/
Jian, Z., Larsen, H.C., Alvarez Zarikian, C.A., Sun, Z., Stock, J.M., Klaus, A., Boaga, J., Bowden, S.A., Briais, A., Chen, Y., Cukur, D., Dadd, K.A., Ding, W., Dorais, M.J., Ferré, E.C., Ferreira, F., Furusawa, A., Gewecke, A.J., Hinojosa, J.L., Höfig, T.W., Hsiung, K.-H., Huang, B., Huang, E., Huang, X.-L., Jiang, S., Jin, H., Johnson, B.G., Kurzawski, R.M., Lei, C., Li, B., Li, L., Li, Y., Lin, J., Liu, C., Liu, C., Liu, Z., Luna, A., Lupi, C., McCarthy, A.J., Mohn, G., Ningthoujam, L.S., Nirrengarten, M., Osono, N., Peate, D.W., Persaud, P., Qiu, N., Robinson, C.M., Satolli, S., Sauermilch, I., Schindlbeck, J.C., Skinner, S.M., Straub, S.M., Su, X., Tian, L., van der Zwan, F.M., Wan, S., Wu, H., Xiang, R., Yadav, R., Yi, L., Zhang, C., Zhang, J., Zhang, Y., Zhao, N., Zhong, G., and Zhong, L., 2018. Site U1505. In Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists, South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program). https://doi.org/
Childress, L.B., Alvarez Zarikian, C.A., Briais, A., Dadd, K.A., Deng, J.-M., Höfig, T.W., Huang, X.-L., Li, B., Lin, J., Liu, C., Liu, Z., Nirrengarten, M.F.R., Peate, D.W., Qiu, N., Satolli, S., Stock, J.M., Sun, Z., van der Zwan, F.M., Xiang, R., Yi, L., and Zhong, L., 2020. Expedition 368X summary. In Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists, South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program). https://doi.org/
Childress, L.B., Alvarez Zarikian, C.A., Briais, A., Dadd, K.A., Deng, J.-M., Höfig, T.W., Huang, X.-L., Li, B., Lin, J., Liu, C., Liu, Z., Nirrengarten, M.F.R., Peate, D.W., Qiu, N., Satolli, S., Stock, J.M., Sun, Z., van der Zwan, F.M., Xiang, R., Yi, L., and Zhong, L., 2020. Expedition 368X methods supplement. In Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists, South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program). https://doi.org/
Childress, L.B., Alvarez Zarikian, C.A., Briais, A., Dadd, K.A., Deng, J.-M., Höfig, T.W., Huang, X.-L., Li, B., Lin, J., Liu, C., Liu, Z., Nirrengarten, M.F.R., Peate, D.W., Qiu, N., Satolli, S., Stock, J.M., Sun, Z., van der Zwan, F.M., Xiang, R., Yi, L., and Zhong, L., 2020. Return to Site U1503. In Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists, South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program). https://doi.org/
Supplementary material
Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists, 2018. Supplementary material, https://doi.org/
Expedition research results
Schindlbeck-Belo, J.C., Dadd, K., Wang, K.-L., and Lee, H.-Y., 2022. Data report: marine tephra compositions in the deep drilling cores of the South China Sea, IODP Expeditions 349 and 367/368. In Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists, South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program). https://doi.org/10.14379/iodp.proc.367368.204.2022
Straub, S.M., Mallick, S., Gomez-Tuena, A., and Dorais, M.J., 2022. Data report: major and trace element and Nd-Pb-Hf isotope composition of the Site U1504 metamorphic basement in the South China Sea, IODP Expedition 367/368/368X. In Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists, South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program). https://doi.org/10.14379/iodp.proc.367368.203.2022
Straub, S.M., Gomez-Tuena, A., and Dorais, M.J., 2022. Data report: major and trace element and Sr-Nd-Pb-Hf isotope composition of three granite clasts from Hole U1501D in the South China Sea, IODP Expedition 367/368/368X. In Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the Expedition 367/368 Scientists, South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program). https://doi.org/10.14379/iodp.proc.367368.202.2022
Journals/Books
Chen, H., Stow, D.A.V., Xie, X., Ren, J., Mao, K., Gao, Y., Chen, B., Zhang, W., Vandorpe, T., and Van Rooij, D., 2021. Depositional architecture and evolution of basin-floor fan systems since the late Miocene in the northwest sub-basin, South China Sea. Marine and Petroleum Geology, 126:104803. https://doi.org/10.1016/j.marpetgeo.2020.104803
Chen, L., Tian, L., Hu, S.-Y., Gong, X., Dong, Y., Gao, J., Ding, W., Wu, T., and Liu, H., 2023. Seafloor hydrothermal circulation at a rifted margin of the South China Sea: insights from basement epidote veins in IODP Hole U1502B. Lithos, 444–445:107102. https://doi.org/10.1016/j.lithos.2023.107102
Chen, S.-S., Chen, J., Guo, Z., Wu, T., Liu, J., and Gao, R., 2022. Magma evolution of the South China Sea basin from continental-margin rifting to oceanic crustal spreading: constraints from In-situ trace elements and Sr isotope of minerals. Chemical Geology, 589:120680. https://doi.org/10.1016/j.chemgeo.2021.120680
Cheng, L., Fang, Y., Niu, X., Li, T., Dong, C., Zhao, Y., Hu, H., Kong, F., Tan, P., Ruan, A., Lu, S., Fan, J., Muhammad, H.J., Ding, W., Li, J., and Du, X., 2023. Lithospheric velocity structure of South China Sea basin from ocean bottom seismometer ambient noise tomography. Tectonophysics, 864:230008. https://doi.org/10.1016/j.tecto.2023.230008
Cheng, Z., Ma, R., Cao, L., Liu, C., Dai, L., and Weng, C., 2023. Rapid reorganization of the Pearl River network driven by spreading of the South China Sea at around 32 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 629:111785. https://doi.org/10.1016/j.palaeo.2023.111785
Cui, Y., Shao, L., Yu, M., and Huang, C., 2021. Formation of Hengchun accretionary prism turbidites and implications for deep-water transport processes in the northern South China Sea. Acta Geologica Sinica - English Edition, 95(1):55–65. https://doi.org/10.1111/1755-6724.14640
Ding, W., Sun, Z., Dadd, K., Fang, Y., and Li, J., 2018. Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes. Earth and Planetary Science Letters, 488:115–125. https://doi.org/10.1016/j.epsl.2018.02.011
Ding, W., Sun, Z., Mohn, G., Nirrengarten, M., Tugend, J., Manatschal, G., and Li, J., 2020. Lateral evolution of the rift-to-drift transition in the South China Sea: evidence from multi-channel seismic data and IODP Expeditions 367 & 368 drilling results. Earth and Planetary Science Letters, 531:115932. https://doi.org/10.1016/j.epsl.2019.115932
Dong, H., Wan, S., Liu, C., Zhao, D., Zeng, Z., and Li, A., 2022. Mineralogical and geochemical constraints on the origin of the late Miocene red-green rhythm layer in the northern South China Sea. Geoscience Frontiers, 29(04):42–54. https://doi.org/10.13745/j.esf.sf.2022.1.11
Duraimaran, P., Mani, D., Yadav, R., Pandey, D.K., Ramamurthy, P.B., Raza, W., and Babu, E.V.S.S.K., 2024. Biogeochemical evidence of the Oligocene and late Miocene–Pleistocene climatic variability from two deep sediment cores of the South China Sea. Journal of Earth System Science, 133(3):166. https://doi.org/10.1007/s12040-024-02372-6
Fang, P., Ding, W., Zhao, Y., Lin, X., and Zhao, Z., 2023. Detachment-controlled subsidence pattern at hyper-extended passive margin: insights from backstripping modelling of the Baiyun Rift, northern South China Sea. Gondwana Research, 120:70–84. https://doi.org/10.1016/j.gr.2021.12.012
Fenton, I.S., Woodhouse, A., Aze, T., Lazarus, D., Renaudie, J., Dunhill, A.M., Young, J.R., and Saupe, E.E., 2021. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Scientific Data, 8(1):160. https://doi.org/10.1038/s41597-021-00942-7
Ferré, E.C., Satolli, S., Wu, H., Persaud, P., Çukur, D., and Bowden, S.A., 2023. Red or green: overprinting of the climatic signal in Miocene sediments, South China Sea (IODP Expedition 368, Site U1502). Terra Nova. https://doi.org/10.1111/ter.12670
Gao, J., Wu, S., Lüdmann, T., Li, C.-F., Li, L., Lu, Y., Yang, Z., Tian, L., Qin, Y., and Song, T., 2023. Extensional structures and Cenozoic magmatism in the northwestern South China Sea. Gondwana Research, 120:219–234. https://doi.org/10.1016/j.gr.2022.09.005
Hao, S., Mei, L., Pang, X., Gernigon, L., Paton, D., Zheng, J., Ye, Q., Zhou, Z., and Zhong, Y., 2022. Rifted margin with localized detachment and polyphase magmatism: a new model of the northern South China Sea. Geological Society of America Bulletin, 2022. https://doi.org/10.1130/B36264.1
He, L., Liu, Z., Lyu, X., and Ma, P., 2022. Clay mineral assemblages of the oceanic red beds in the northern South China Sea and their responses to the middle Miocene climate transition. Science China Earth Sciences. https://doi.org/10.1007/s11430-021-9878-0
He, Z., Zhang, Z., Guo, Z., Tan, N., Zhang, Z., Wu, Z., Zhang, C., and Deng, C., 2023. The spatial–temporal evolution of the Asian summer monsoon during the late Miocene and potential CO2 forcing: a data–model comparison. Global and Planetary Change, 221:104052. https://doi.org/10.1016/j.gloplacha.2023.104052
Hu, S.-Y., Wang, X.-C., Tian, L., Martin, L., Schoneveld, L., Barnes, S.J., Guagliardo, P., Ding, W., and Rickard, W.D.A., 2022. Variability of sulfur isotopes and trace metals in pyrites from the upper oceanic crust of the South China Sea Basin, implications for sulfur and trace metal cycling in subsurface. Chemical Geology, 606:120982. https://doi.org/10.1016/j.chemgeo.2022.120982
Hu, Z., Huang, B., Geng, L., and Wang, N., 2022. Sediment provenance in the northern South China Sea since the Late Miocene. Open Geosciences, 14(1):1636–1649. https://doi.org/10.1515/geo-2022-0454
Hussein, A.A., Zhao, L., Chen, Y., and Wang, J., 2023. Rock Physics characteristics of marine sediments in the South China Sea: link between the geological factors and elastic properties. Frontiers in Earth Science, 10:931611. https://doi.org/10.3389/feart.2022.931611
Jian, Z., Jin, H., Kaminski, M.A., Ferreira, F., Li, B., and Yu, P.-S., 2019. Discovery of the marine Eocene in the northern South China Sea. National Science Review, 6(5):881–885. https://doi.org/10.1093/nsr/nwz084
Jiao, W., Wan, S., Li, Y.-X., Zhao, D., Liu, C., Jin, H., Li, M., Yu, Z., Zhang, J., Pei, W., and Li, A., 2023. Global cooling-driven summer mMonsoon weakening in South China across the Eocene-Oligocene transition. Journal of Geophysical Research: Solid Earth, 128(11):e2023JB027265. https://doi.org/10.1029/2023JB027265
Jin, H., Wan, S., Clift, P.D., Liu, C., Huang, J., Jiang, S., Li, M., Qin, L., Shi, X., and Li, A., 2022. Birth of the Pearl River at 30 Ma: evidence from sedimentary records in the northern South China Sea. Earth and Planetary Science Letters, 600:117872. https://doi.org/10.1016/j.epsl.2022.117872
Jin, H., Wan, S., Liu, C., Zhao, D., Pei, W., Yu, Z., Zhang, J., Song, Z., Li, M., Tang, Y., and Li, A., 2023. Evolution of silicate weathering in South China since 30 Ma: controlling factors and global implications. Global and Planetary Change, 223:104095. https://doi.org/10.1016/j.gloplacha.2023.104095
Jin, X., Xu, J., Li, H., Li, Y., Qiao, P., Wu, L., Ling, C., Li, B., and Liu, C., 2020. Origin of the rhythmic reddish-brown and greenish-gray sediments in the abyssal South China Sea: implications for oceanic circulation in the late Miocene. Marine Geology, 430:106378. https://doi.org/10.1016/j.margeo.2020.106378
Kessler, F., and Jong, J., 2023. A discussion on the relationship between prominent unconformities on the SCS shelf margins and the end of seafloor spreading in the South China Sea. Indonesian Journal of Sedimentary Geology, 49(1). https://doi.org/10.51835/bsed.2023.49.1.396
Kessler, F.L., Jong, J., and Madon, M., 2021. Eocene sediments in the South China Sea, precursor deposits of the Oligocene expansion? Indonesian Journal of Sedimentary Geology, 47(2). https://doi.org/10.51835/bsed.2021.47.2.319
Larsen, H.C., Mohn, G., Nirrengarten, M., Sun, Z., Stock, J., Jian, Z., Klaus, A., Alvarez-Zarikian, C.A., Boaga, J., Bowden, S.A., Briais, A., Chen, Y., Cukur, D., Dadd, K., Ding, W., Dorais, M., Ferré, E.C., Ferreira, F., Furusawa, A., Gewecke, A., Hinojosa, J., Höfig, T.W., Hsiung, K.H., Huang, B., Huang, E., Huang, X.L., Jiang, S., Jin, H., Johnson, B.G., Kurzawski, R.M., Lei, C., Li, B., Li, L., Li, Y., Lin, J., Liu, C., Liu, C., Liu, Z., Luna, A.J., Lupi, C., McCarthy, A., Ningthoujam, L., Osono, N., Peate, D.W., Persaud, P., Qiu, N., Robinson, C., Satolli, S., Sauermilch, I., Schindlbeck, J.C., Skinner, S., Straub, S., Su, X., Su, C., Tian, L., van der Zwan, F.M., Wan, S., Wu, H., Xiang, R., Yadav, R., Yi, L., Yu, P.S., Zhang, C., Zhang, J., Zhang, Y., Zhao, N., Zhong, G., and Zhong, L., 2018. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience, 11(10):782–789. https://doi.org/10.1038/s41561-018-0198-1
Li, C.-F., Clift, P.D., Sun, Z., and Larsen, H.C., 2019. Starting a new ocean and stopping it. Oceanography, 32(1):153–156. https://doi.org/10.5670/oceanog.2019.138
Li, G., Huang, B., and Lu, Y., 2024. Element geochemical characteristics of sediments from the Early-Middle Miocene in the IODP U1500B core in the northern South China Sea and a brief analysis of the paleoclimate in the source area. Journal of Peking University (Natural Science Edition). https://doi.org/10.13209/j.0479-8023.2024.054
Li, G., Mei, L., Pang, X., Zheng, J., Ye, Q., and Hao, S., 2022. Magmatism within the northern margin of the South China Sea during the post-rift stage: an overview, and new insights into the geodynamics. Earth-Science Reviews, 225:103917. https://doi.org/10.1016/j.earscirev.2022.103917
Li, J., Ding, W., Lin, J., Xu, Y., Kong, F., Li, S., Huang, X., and Zhou, Z., 2021. Dynamic processes of the curved subduction system in Southeast Asia: a review and future perspective. Earth-Science Reviews, 217:103647. https://doi.org/10.1016/j.earscirev.2021.103647
Li, L., Shi, F., Ma, G., and Qiu, Q., 2019. Tsunamigenic potential of the Baiyun slide complex in the South China Sea. Journal of Geophysical Research: Solid Earth, 124(8):7680–7698. https://doi.org/10.1029/2019JB018062
Li, M., Wan, S., Colin, C., Jin, H., Zhao, D., Pei, W., Jiao, W., Tang, Y., Tan, Y., Shi, X., and Li, A., 2023. Expansion of C4 plants in South China and evolution of East Asian monsoon since 35 Ma: black carbon records in the northern South China Sea. Global and Planetary Change, 223:104079. https://doi.org/10.1016/j.gloplacha.2023.104079
Li, W., 2018. Research on the History of South China Sea Expansion Based on the Response of Stratigraphic Sedimentation [MS thesis]. Zhejiang University, Zhejiang, China. https://cdmd.cnki.com.cn/Article/CDMD-10335-1018259087.htm
Liao, R., Zhu, H., Li, C., and Sun, W., 2022. Geochemistry of mantle source during the initial expansion and its implications for the opening of the South China Sea. Marine Geology, 447:106798. https://doi.org/10.1016/j.margeo.2022.106798
Lin, J., Xu, Y., Sun, Z., and Zhou, Z., 2019. Mantle upwelling beneath the South China Sea and links to surrounding subduction systems. National Science Review, 6(5):877–881. https://doi.org/10.1093/nsr/nwz123
Liu, C., Stockli, D.F., Clift, P.D., Wan, S., Stockli, L.D., Höfig, T.W., and Schindlbeck-Belo, J.C., 2022. Geochronological and geochemical characterization of paleo-rivers deposits during rifting of the South China Sea. Earth and Planetary Science Letters, 584:117427. https://doi.org/10.1016/j.epsl.2022.117427
Liu, F., Du, J., Huang, E., Ma, W., Ma, X., Lourens, L.J., and Tian, J., 2024. Accelerated marine carbon cycling forced by tectonic degassing over the Miocene Climate Optimum. Science Bulletin. https://doi.org/10.1016/j.scib.2023.12.052
Liu, J., Li, S., Cao, X., Dong, H., Suo, Y., Jiang, Z., Zhou, J., Li, X., Zhang, R., Liu, L., and Foulger, G.R., 2023. Back-arc tectonics and plate reconstruction of the Philippine Sea-South China Sea region since the Eocene. Geophysical Research Letters, 50(5):e2022GL102154. https://doi.org/10.1029/2022GL102154
Liu, S., Zhao, M., Sibuet, J.-C., Qiu, X., Wu, J., Zhang, J., Chen, C., Xu, Y., and Sun, L., 2018. Geophysical constraints on the lithospheric structure in the northeastern South China Sea and its implications for the South China Sea geodynamics. Tectonophysics, 742–743:101–119. https://doi.org/10.1016/j.tecto.2018.06.002
Lu, Y., and Huang, B., 2024. Upper ocean variations at IODP Hole U1505C in the northern South China Sea and their response to the East Asian Monsoon during the Middle Miocene. Marine Micropaleontology, 189:102365. https://doi.org/10.1016/j.marmicro.2024.102365
Ma, P., Liu, Z., Huang, B., Zhao, Y., Shu, W., and Li, Y., 2020. Oligocene evolution of the outermost continental margin in response to breakup and early spreading of the South China Sea. Marine Geology, 427:106241. https://doi.org/10.1016/j.margeo.2020.106241
Ma, R., Liu, C., Li, Q., and Jin, X., 2019. Calcareous nannofossil changes in response to the spreading of the South China Sea basin during Eocene-Oligocene. Journal of Asian Earth Sciences, 184:103963. https://doi.org/10.1016/j.jseaes.2019.103963
Ma, R., Yang, H., Jin, X., Zhao, Z., Zhang, G., and Liu, C., 2020. Calcareous nannofossil changes in the early Oligocene linked to nutrient and atmospheric CO2. Acta Oceanologica Sinica, 39(10):70–80. https://doi.org/10.1007/s13131-020-1661-6
Meng, X., Shao, L., Cui, Y., Zhu, W., Qiao, P., Sun, Z., and Hou, Y., 2021. Sedimentary records from Hengchun accretionary prism turbidites on Taiwan Island: implication on late Neogene migration rate of the luzon subduction system. Marine and Petroleum Geology, 124:104820. https://doi.org/10.1016/j.marpetgeo.2020.104820
Miao, Y., Warny, S., Liu, C., Yang, Y., Lei, Y., Xiang, M., and Wang, Z., 2022. Palynomorph assemblages evidence for river reorganization 8.5 million years ago in Southeast Asia. Global and Planetary Change, 212:103808. https://doi.org/10.1016/j.gloplacha.2022.103808
Mohn, G., Ringenbach, J.C., Nirrengarten, M., Lei, C., McCarthy, A., and Tugend, J., 2022. Mode of continental breakup of marginal seas. Geology, 50(10):1208–1213. https://doi.org/10.1130/G50204.1
Nie, Y., 2019. Study on magnetostratigraphy at station U1505 of IODP368 voyage in the South China Sea from late Miocene to Pliocene [MS thesis]. China University of Geosciences, Beijing, China. https://cdmd.cnki.com.cn/Article/CDMD-11415-1019140065.htm
Nie, Y., Wu, H., Satolli, S., Ferré, E.C., Shi, M., Fang, Q., Xu, Y., Zhang, S., Li, H., and Yang, T., 2023. Late Miocene to Present paleoclimatic and paleoenvironmental evolution of the South China Sea recorded in the magneto-vyclostratigraphy of IODP Site U1505. Paleoceanography and Paleoclimatology, 38(2):e2022PA004547. https://doi.org/10.1029/2022PA004547
Ningthoujam, L.S., and Pandey, D.K., 2020. A summary of the South China Sea evolution. In Pandey, D.K., Ravichandran, M., and Nair, N. (Eds.), Dynamics of the Earth System: Evolution, Processes and Interactions: Contributions from Scientific Ocean Drilling. Cham, Switzerland (Springer International Publishing), 265–276. https://doi.org/10.1007/978-3-030-40659-2_11
Nirrengarten, M., Mohn, G., Kusznir, N.J., Sapin, F., Despinois, F., Pubellier, M., Chang, S.P., Larsen, H.C., and Ringenbach, J.C., 2020. Extension modes and breakup processes of the southeast China-northwest Palawan conjugate rifted margins. Marine and Petroleum Geology, 113:104123. https://doi.org/10.1016/j.marpetgeo.2019.104123
Nirrengarten, M., Mohn, G., Schito, A., Corrado, S., Gutiérrez-García, L., Bowden, S.A., and Despinois, F., 2020. The thermal imprint of continental breakup during the formation of the South China Sea. Earth and Planetary Science Letters, 531:115972. https://doi.org/10.1016/j.epsl.2019.115972
Peng, X., and Li, C.-F., 2024. Along-strike break-up variations of the continent–ocean transition zone in the northern South China Sea. Journal of the Geological Society, 181(2):jgs2023-2134. https://doi.org/10.1144/jgs2023-134
Peng, X., Li, C.-F., Shen, C., Liu, Y., and Shi, H., 2022. Intra-basement structures and their implications for rifting of the northeastern South China Sea margin. Journal of Asian Earth Sciences, 225:105073. https://doi.org/10.1016/j.jseaes.2021.105073
Qin, Y., 2019. Magnetostratigraphic study on the U1501 station of the IODP368 voyage in the South China Sea since the late Miocene [MS thesis]. China University of Geosciences, Beijing, China. https://cdmd.cnki.com.cn/Article/CDMD-11415-1019140075.htm
Ren, J., Sun, m., Zhu, B., Han, B., Zhang, H., and Lü, W., 2018. Discussion on the palaeo-sedimentary environment and tectonic significance of gravel layers at IODP Site U1499 in northern South China Sea. Earth Science - Journal of China University of Geoscience, 43(2):149–191. http://www.earth-science.net/en/article/doi/10.3799/dqkx.2018.209
Robinson, C.M., 2018. Sediment supply to the South China Sea as recorded by sand composition at IODP Expedition 367/368 Sites U1499 and U1500 [MS thesis]. The Ohio State University, Columbus, OH. http://rave.ohiolink.edu/etdc/view?acc_num=osu1543404762724956
Shi, M., Wu, H., Ferré, E.C., Satolli, S., Fang, Q., Nie, Y., Qin, Y., Zhang, S., Yang, T., and Li, H., 2022. Middle Miocene-Pleistocene magneto-cyclostratigraphy from IODP Site U1501 in the northern South China Sea. Frontiers in Earth Science, 10:882617. https://doi.org/10.3389/feart.2022.882617
Shu, W., 2023. Sedimentary process of late Oligocene-Miocene oceanic red muds in the northern South China Sea and their paleoceanographic significance [PhD dissertation]. Paris-Saclay University, France. http://www.theses.fr/2023UPASJ015/document
Shu, W., 2023. Sedimentary process of the late Oligocene-Miocene oceanic red beds in the northern South China Sea and their paleoceanographic significance [PhD dissertation]. Université Paris-Saclay, France. https://theses.fr/2023UPASJ015
Shu, W., Colin, C., Liu, Z., and Dapoigny, A., 2024. Late Oligocene−Miocene evolution of deep-water circulation in the abyssal South China Sea: insights from Nd isotopes of fossil fish teeth. Geology. https://doi.org/10.1130/G52042.1
Shu, W., Liu, Z., Colin, C., Ma, P., Huang, B., and Dapoigny, A., 2023. Terrigenous provenance of late Oligocene–Miocene sediments in the central basin of the South China Sea and its implications for chemical weathering and climate change. Marine Geology, 462:107098. https://doi.org/10.1016/j.margeo.2023.107098
Song, T., Li, C.-F., Wu, S., Yao, Y., and Gao, J., 2019. Extensional styles of the conjugate rifted margins of the South China Sea. Journal of Asian Earth Sciences, 177:117–128. https://doi.org/10.1016/j.jseaes.2019.03.008
Su, J., and Zong, G., 2020. Sedimentary characteristics and petrophysical response of turbidite at IODP U1499 and U1500 stations in the South China Sea. Marine Geology and Quaternary Geology, 40(3). https://doi.org/10.16562/j.cnki.0256-1492.2020012101
Su, M., Alves, T.M., Li, W., Sha, Z., Hsiung, K.-H., Liang, J., Kuang, Z., Wu, N., Zhang, B., and Chiang, C.-S., 2019. Reassessing two contrasting late Miocene-Holocene stratigraphic frameworks for the Pearl River Mouth Basin, northern South China Sea. Marine and Petroleum Geology, 102:899–913. https://doi.org/10.1016/j.marpetgeo.2018.12.034
Sun, L., Sun, Z., Huang, X., Jiang, Y., and Stock, J.M., 2020. Microstructures documenting Cenozoic extension processes in the northern continental margin of the South China Sea. International Geology Review, 62(7–8):1094–1107. https://doi.org/10.1080/00206814.2019.1669079
Sun, L., Sun, Z., Zhang, Y., Zhao, Z., Zhao, J., Zhang, C., Zhang, Z., Sun, L., and Zhu, X., 2021. Multi-stage carbonate veins at IODP Site U1504 document Early Cretaceous to early Cenozoic extensional events on the South China Sea margin. Marine Geology, 442:106656. https://doi.org/10.1016/j.margeo.2021.106656
Sun, L., Zhang, Y., Sun, Z., Miao, X., Li, R., and Zhang, W., 2024. Origin of the Site U1504 alkaline basalts in the South China Sea continental margin: insights on deep mantle diversity and subduction dynamics under continental arcs. Geological Society of America Bulletin. https://doi.org/10.1130/B37471.1
Sun, Z., Lin, J., Qiu, N., Jian, Z., Wang, P., Pang, X., Zheng, J., and Zhu, B., 2019. The role of magmatism in the thinning and breakup of the South China Sea continental margin. National Science Review, 6(5):871–876. https://doi.org/10.1093/nsr/nwz116
Sun, Z., Lin, J., Wang, P., Jian, Z., and Li, C., 2020. International collaboration of ocean exploration in the South China Sea enhanced by International Ocean Discovery Program Expeditions 367/368/368X. Journal of Tropical Oceanography, 39(6):18–29. https://doi.org/10.11978/YG2020002
Wang, B., Zhong, G., Wang, L., He, M., Zhu, B., Guo, Y., Zhang, H., and Wu, Z., 2023. Morphology, seismic stratigraphy, and tectonic control of the Yitong submarine canyons – fan apron system in the northern South China Sea. Marine and Petroleum Geology, 155:106347. https://doi.org/10.1016/j.marpetgeo.2023.106347
Wang, F., and Ding, W., 2023. How did sediments disperse and accumulate in the oceanic basin, South China Sea. Marine and Petroleum Geology, 147:105979. https://doi.org/10.1016/j.marpetgeo.2022.105979
Wang, J., Ma, B., Zhao, L., Su, P., and Wu, S., 2023. Rock physics diagnostics to characterize early diagenetic processes in hemipelagic calcareous ooze in the northern South China Sea margin. Marine Geophysical Research, 44(4):20. https://doi.org/10.1007/s11001-023-09528-x
Wang, P., 2019. New insights into marine basin opening. National Science Review, 6(5):870–870. https://doi.org/10.1093/nsr/nwz099
Wang, P., Huang, C.-Y., Lin, J., Jian, Z., Sun, Z., and Zhao, M., 2019. The South China Sea is not a mini-Atlantic: plate-edge rifting vs intra-plate rifting. National Science Review, 6(5):902–913. https://doi.org/10.1093/nsr/nwz135
Wang, P., and Jian, Z., 2019. Exploring the deep South China Sea: retrospects and prospects. Science China Earth Sciences, 62(10):1473–1488. https://doi.org/10.1007/s11430-019-9484-4
Wang, Q., Zhao, M., Zhang, J., Zhang, H., Sibuet, J.-C., Li, Z., He, E., Qiu, X., Peng, W., and Chen, G., 2023. Breakup mechanism of the northern South China Sea: evidence from the deep crustal structure across the continent-ocean transition. Gondwana Research, 120:47–69. https://doi.org/10.1016/j.gr.2022.09.004
Wang, W., Tian, L., Castillo, P.R., Wu, T., Dong, Y., Liu, H., and Chen, L., 2023. Petrogenesis of high-alumina basalts: Implications for magmatic processes associated with the opening of the South China Sea. Chemical Geology, 636:121641. https://doi.org/10.1016/j.chemgeo.2023.121641
Wang, X., Cai, F., Sun, Z., Li, Q., Li, A., Sun, Y., Zhong, W., and Sun, Q., 2022. Late Miocene−Quaternary seismic stratigraphic responses to tectonic and climatic changes at the northeastern margin of the South China Sea. Geological Society of America Bulletin. https://doi.org/10.1130/B36224.1
Wang, X., Huang, H., Xu, H., Ren, Z., Zhang, J., and Zhao, Z., 2021. The deep thermal structure of the lithosphere in the northwestern South China Sea and its control on the shallow tectonics. Science China Earth Sciences, 64(6):962–976. https://doi.org/10.1007/s11430-020-9726-2
Wang, Y., and Jiang, S., 2020. Variation in middle-late Miocene sedimentation rates in the northern South China Sea and its regional geological implications. Marine Micropaleontology, 160:101911. https://doi.org/10.1016/j.marmicro.2020.101911
Weber, R.D., Lu, Y., George, R.A., Reilly, T.M., Roederer, R.V., Edmunds, J.A., Myers, N.R., Avery, A.J., Waterman, A.S., and Smith, V., 2018. Bioevent Ages – Gulf of Mexico Basin, USA. Paleo-Data Inc. https://www.paleodata.com/chart/
Wen, Y., Li, C.-F., Wang, L., Liu, Y., Peng, X., Yao, Z., and Yao, Y., 2021. The onset of seafloor spreading at the northeastern continent-ocean boundary of the South China Sea. Marine and Petroleum Geology, 133:105255. https://doi.org/10.1016/j.marpetgeo.2021.105255
Wu, J., Liu, Z., and Yu, X., 2021. Plagioclase-regulated hydrothermal alteration of basaltic rocks with implications for the South China Sea rifting. Chemical Geology, 585:120569. https://doi.org/10.1016/j.chemgeo.2021.120569
Wu, L., Huang, X., Cao, H.-s., and Wang, R.-j., 2022. Evaluating color parameters calculated from digital photographs of sediment cores as a tool in paleoenvironmental reconstruction—a case study using IODP Site U1502 from the South China Sea. Sedimentary Geology, 442:106281. https://doi.org/10.1016/j.sedgeo.2022.106281
Wu, Y., 2020. Analysis of sedimentary processes and controlling factors in the northwest and southwest sub-basins of the South China Sea [PhD dissertation]. Zheijiang University, Zhejiang, China. https://cdmd.cnki.com.cn/Article/CDMD-10335-1020413412.htm
Wu, Y., Ding, W., Clift, P.D., Li, J., Yin, S., Fang, Y., and Ding, H., 2020. Sedimentary budget of the Northwest sub-basin, South China Sea: controlling factors and geological implications. International Geology Review, 62(7–8):970–987. https://doi.org/10.1080/00206814.2019.1597392
Wu, Z., Zhang, J., Xu, M., and Li, H., 2023. Magnetic anomaly lineations in the northeastern South China Sea and their implications for initial seafloor spreading. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.1015856
Xu, Y., Li, B.-H., Yu, Z.-F., Chen, H.-J., Guo, Q.-M., Zhang, K., and Wang, X.-Y., 2024. Middle-late Quaternary planktonic foraminifera and the upper-column sea water changes in the northern SCS during the δ13C maximum events. Palaeogeography, Palaeoclimatology, Palaeoecology, 651:112385. https://doi.org/10.1016/j.palaeo.2024.112385
Yang, C., Dang, H., Zhou, X., Zhang, H., Wang, X., Wang, Y., Qiao, P., Jiang, X., and Jian, Z., 2021. Upper ocean hydrographic changes in response to the evolution of the East Asian monsoon in the northern South China Sea during the middle to late Miocene. Global and Planetary Change, 201:103478. https://doi.org/10.1016/j.gloplacha.2021.103478
Yang, F., Zhang, J., Du, F., Wang, Q., Pang, X., Zhao, M., and Qiu, X., 2020. A new method for shots and OBSs' relocation applying in three-dimensional seismic survey. Chinese Journal of Geophysics, 63(2):766–777. https://doi.org/10.6038/cjg2020N0150
Yijing, W., Haiyan, J., Zhimin, J., and Juan, X., 2021. The response of paleo-water depth to T60 tectonic movement in the northern South China Sea during the late Oligocene to early Miocene. Haiyang Xuebao, 43(5):79–87. https://doi.org/10.12284/hyxb2021093
Yin, S., Hernández-Molina, F.J., Lin, L., He, M., Gao, J., and Li, J., 2023. Plate convergence controls long-term full-depth circulation of the South China Sea. Marine Geology, 459:107050. https://doi.org/10.1016/j.margeo.2023.107050
Yin, S., Pope, E.L., Lin, L., Ding, W., Gao, J., Wu, Z., Yang, C., Chen, J., and Li, J., 2021. Re-channelization of turbidity currents in South China Sea abyssal plain due to seamounts and ridges. Marine Geology, 440:106601. https://doi.org/10.1016/j.margeo.2021.106601
Yu, J., Yan, P., Qiu, Y., Delescluse, M., Huang, W., and Wang, Y., 2021. Oceanic crustal structures and temporal variations of magmatic budget during seafloor spreading in the east sub-basin of the South China Sea. Marine Geology, 436:106475. https://doi.org/10.1016/j.margeo.2021.106475
Yu, X., and Liu, Z., 2020. Non-mantle-plume process caused the initial spreading of the South China Sea. Scientific Reports, 10(1):8500. https://doi.org/10.1038/s41598-020-65174-y
Yuan, Y., He, E., Zhao, M., Zhang, C., Gao, J., Zhang, J., and Sun, Z., 2023. Seismic velocity structure and tectonic evolution of the continent-ocean transition in the mid-northern South China Sea. Tectonophysics, 862:229984. https://doi.org/10.1016/j.tecto.2023.229984
Zhang, C., Manatschal, G., Pang, X., Sun, Z., Zheng, J., Li, H., Sun, L., Zhang, J., and Zhao, Y., 2020. Discovery of mega-sheath folds flooring the Liwan Subbasin (South China Sea): implications for the rheology of hyperextended crust. Geochemistry, Geophysics, Geosystems, 21(7):e2020GC009023. https://doi.org/10.1029/2020GC009023
Zhang, C., Manatschal, G., Taylor, B., Sun, Z., Zhao, M., and Zhang, J., 2024. Characterization and mapping of continental breakup and seafloor spreading initiation: the example of the northern rifted margin of the South China Sea. Basin Research, 36(4):e12882. https://doi.org/10.1111/bre.12882
Zhang, C., Sun, Z., Manatschal, G., Pang, X., Li, S., Sauter, D., Péron-Pinvidic, G., and Zhao, M., 2021. Ocean-continent transition architecture and breakup mechanism at the mid-northern South China Sea. Earth-Science Reviews, 217:103620. https://doi.org/10.1016/j.earscirev.2021.103620
Zhang, C., Sun, Z., Manatschal, G., Pang, X., Qiu, N., Su, M., Zheng, J., Li, H., Gu, Y., Zhang, J., and Zhao, Y., 2021. Syn-rift magmatic characteristics and evolution at a sediment-rich margin: Insights from high-resolution seismic data from the South China Sea. Gondwana Research, 91:81–96. https://doi.org/10.1016/j.gr.2020.11.012
Zhang, C., Zhang, W., Zhang, C., Zheng, L., Yan, S., Ma, Y., and Dang, W., 2024. Astronomical time scale of the Late Pleistocene in the northern South China Sea based on carbonate deposition record. Journal of Marine Science and Engineering, 12(3):438. https://doi.org/10.3390/jmse12030438
Zhang, G., Qu, H., Jia, Q., Zhang, L., Yang, B., Chen, S., Ji, M., Sun, R., Guan, L., and Hayat, K., 2021. Passive continental margin segmentation of the marginal seas and its effect on hydrocarbon accumulation: a case study of the northern continental margin in South China Sea. Marine and Petroleum Geology, 123:104741. https://doi.org/10.1016/j.marpetgeo.2020.104741
Zhang, H., Shao, L., Zhang, G., Cui, Y., Zhao, Z., and Hou, Y., 2020. The response of Cenozoic sedimentary evolution coupled with the formation of the South China Sea. Geological Journal, 55(10):6989–7010. https://doi.org/10.1002/gj.3856
Zhang, J., Zhao, M., Ding, W., Ranero, C.R., Sallares, V., Gao, J., Zhang, C., and Qiu, X., 2023. New insights Into the rift-to-drift process of the northern South China Sea margin constrained by a three-dimensional wide-angle seismic celocity model. Journal of Geophysical Research: Solid Earth, 128(4):e2022JB026171. https://doi.org/10.1029/2022JB026171
Zhang, J., Zhao, M., Sun, Z., Sun, L., Xu, M., Yang, H., Wang, Q., Pang, X., Zheng, J., and Yao, Y., 2023. Large volume of magma involved in South China Sea rifting: implication for mantle breakup earlier than crust. Tectonophysics, 853:229801. https://doi.org/10.1016/j.tecto.2023.229801
Zhang, K., 2021. The middle and late Miocene benthic foraminifera in the South China Sea and its significance to bottom water mass [MS thesis]. University of Science and Technology of China, Anhui, China. https://cdmd.cnki.com.cn/Article/CDMD-10358-1021075782.htm
Zhang, N., Dang, H., and Jian, Z., 2020. Mid- to Late-Pleistocene orbital-scale changes in the upper-ocean structure of the northern South China Sea: Planktonic foraminiferal oxygen and carbon stable isotope records of IODP Site U1501. Quaternary Sciences, 40(3):605–615. http://en.igg-journals.cn/article/doi/10.11928/j.issn.1001-7410.2020.03.02
Zhang, W., Chen, Z., Han, F., Zhang, Q., Pan, J., Ma, J., and Yang, B., 2019. Stable isotope evidence for a Paleogene high-altitude setting of the Sikeshu drainage basin in the northern Tianshan, western China. Geomorphology, 342:51–60. https://doi.org/10.1016/j.geomorph.2019.05.025
Zhang, X., and Jia, G., 2022. Effects of sediment burial depth and calcium carbonate content on the dry density of sediments in the South China Sea. Frontiers of Marine Geology, 38(06):25–33. https://doi.org/10.16028/j.1009-2722.2021.189
Zhang, Y., 2019. Applying cycle-scaled magnetostratigraphy for global correlation of selected major paleoclimatic events in the Triassic, Cretaceous and Quaternary [PhD dissertation]. Purdue University, West Lafayette, IN. https://www.proquest.com/docview/2838329281
Zhang, Y., Yi, L., and Ogg, J.G., 2019. Pliocene-Pleistocene magneto-cyclostratigraphy of IODP Site U1499 and implications for climate-driven sedimentation in the northern South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 527:118–132. https://doi.org/10.1016/j.palaeo.2019.04.029
Zhang, Z., Daly, J.S., Tian, Y., Lei, C., Sun, X., Badenszki, E., Qin, Y., and Hu, J., 2023. Late Oligocene formation of the Pearl River triggered by the opening of the South China Sea. Geophysical Research Letters, 50(8):e2023GL103049. https://doi.org/10.1029/2023GL103049
Zhang, Z., and Sun, Z., 2023. The early-mid Miocene abyssal brown/green claystone from IODP Site U1503A in the northern South China Sea: implications for paleoclimate and paleoceanography. Gondwana Research. https://doi.org/10.1016/j.gr.2022.10.022
Zhang, Z., Yang, J., Feng, X., Guo, X., Liu, P., Wei, H., Liu, S., Zhao, Y., Zhang, G., Li, S., Zhang, Y., and Li, D., 2024. Redox evolution in the subtropical Northwest Pacific across the Middle Miocene Climate Transition. Journal of Asian Earth Sciences, 259:105916. https://doi.org/10.1016/j.jseaes.2023.105916
Zhao, Z., Zhang, H., Cui, Y., Tang, W., and Qiao, P., 2021. Cenozoic sea-land transition and its petroleum geological significance in the northern South China Sea. Acta Geologica Sinica - English Edition, 95(1):41–54. https://doi.org/10.1111/1755-6724.14628
Zheng, C., Jin, X., and Liu, C., 2023. Sources and content changes of long-chain alkenones in marine sediments from the Early Miocene at IODP Station U1501 in the South China Sea. Marine Geology and Quaternary Geology, 43(02). https://doi.org/10.16562/j.cnki.0256-1492.2022110102
Zhong, Y., Zhang, G.-L., Lv, W.-X., and Huang, F., 2021. Iron isotope constraints on the lithological heterogeneity of the upper mantle in the South China Sea. Journal of Asian Earth Sciences, 220:104934. https://doi.org/10.1016/j.jseaes.2021.104934
Conferences
Ding, W., Sun, Z., Mohn, G., Nirrengarten, M., Tugend, J., Manatschal, G., and Li, J., 2019. Lateral evolution of the rift-to-drift transition in the South China Sea: evidence from multi-channel seismic data and IODP Expeditions 367&368 drilling results. Geophysical Research Abstracts, 21:EGU2019-2413. https://meetingorganizer.copernicus.org/EGU2019/EGU2019-2413.pdf
Ferré, E., Satolli, S., Wu, H., Persaud, P., Cukur, D., and Bowden, S., 2019. "Red or green:" magnetism, redox conditions and the true colors of Miocene marine sediments in the South China Sea (IODP Expedition 368). Geophysical Research Abstracts, 21:EGU2019-2979-2011. https://meetingorganizer.copernicus.org/EGU2019/EGU2019-2979-1.pdf
Furusawa, A., and Hayashi, H., 2019. Planktonic foraminiferal biostratigraphy in the South China Sea IODP Exp. 367 U1499. Presented at the Japan Geoscience Union Meeting, Chiba, Japan, 26–30 May 2019. https://confit.atlas.jp/guide/event/jpgu2019/subject/MIS02-01/advanced
Kitamura, M., Furusawa, A., and Hayashi, H., 2019. Planktonic foraminiferal assemblage and paleoceanography of the Plio-Pleistocene sequence at IODP Site U1499 in the northern South China Sea. Presented at the Japan Geoscience Union Meeting, Chiba, Japan, 26–30 May 2019. https://confit.atlas.jp/guide/event/jpgu2019/subject/MIS19-P06/advanced
Kitamura, M., Furusawa, A., and Hayashi, H., 2020. Planktonic foraminiferal analysis of the Plio-Pleistocene sequence at IODP Site U1499: response of the northern South China Sea environment to the intensity of the East Asian monsoon after Pliocene. Presented at the Japan Geoscience Union/American Geophysical Union Joint Meeting, Chiba, Japan, 24–28 May 2020. https://confit.atlas.jp/guide/event/jpgu2020/subject/MIS08-21/advanced
Lei, C., Ren, J., Mohn, G., Nirrengarten, M., Pang, X., Zheng, J., and Liu, B., 2020. 3D structures and sedimentary infill across the continent-ocean transition of the northern South China Sea: constraint by the drilling results from IODP Expeditions 367, 368 and 368X. Presented at the European Geosciences Union General Assembly, Online, 4–8 May 2020. https://doi.org/10.5194/egusphere-egu2020-378
Nirringarten, M., Geoffroy, M., Gutiérrez, L., Corrado, S., Schito, A., Bowden, S., and the IODP 367-368 Expedition Scientists, 2018. Thermal signatures of continental breakup at the northern South China Sea margin: preliminary results of IODP 367-368. Geophysical Research Abstracts, 20:EGU2018-9131. https://meetingorganizer.copernicus.org/EGU2018/EGU2018-9131.pdf
Sakaguchi, A., Osono, N., and Nakano, K., 2019. High heat with slow cooling of rift margin in the South China Sea, IODP Exp. 368. Presented at the Japan Geoscience Union Meeting, Chiba, Japan, 26–30 May 2019. https://confit.atlas.jp/guide/event/jpgu2019/subject/MIS02-02/advanced?cryptoId=
Zhao, M., Wang, Q., Sun, L., Sun, Z., and Qiu, X., 2017. Significance of deep seismic survey on IODP367-368 in the South China Sea and suggestions for future OBS deployment. Presented at the International Geophysical Conference Abstracts. https://doi.org/10.1190/IGC2017-237
Zhou, Z., and Lin, J., 2020. Mechanism for plate-edge rifting of the South China Sea continental margin: Initial hydrous mantle induces rapid continental-oceanic transition. Presented at the 2020 American Geophysical Union Fall Meeting, Online, 1–17 December 2020. https://abstractsearch.agu.org/meetings/2020/FM/T014-07.html
*The Expedition-related bibliography is continually updated online. Please send updates to PubCrd@iodp.tamu.edu.
- Title page
- Publisher’s notes
- Contents
- Dedication
- Acknowledgments
- Foreword
- Reviewers for this volume
- International Ocean Discovery Program
- Expedition 367/368/368X participants
- Operational and technical staff
- Expedition-related bibliography
- Citation data for IODP publications and journal articles in RIS format