IODP Proceedings    Volume contents     Search

doi:10.2204/iodp.proc.322.103.2010

References

Acton, G.D., Okada, M., Clement, B.M., Lund, S.P., and Williams, T., 2002. Paleomagnetic overprints in ocean sediment cores and their relationship to shear deformation caused by piston coring. J. Geophys. Res., 107(B4):2067. doi:10.1029/2001JB000518

Boyer, S., and Mari, J.-L., 1997. Oil and Gas Exploration Techniques: Seismic Surveying and Well-Logging: Paris (Editions Technip).

Canfield, D.E., Raiswell, R., and Bottrell, S., 1992. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci., 292:659–683.

Cas, R.A.F., and Wright, J.V., 1991. Subaqueous pyroclastic flows and ignimbrites: an assessment. Bull. Volcanol., 53(5):357–380. doi:10.1007/BF00280227

Chan, L.-H., and Kastner, M., 2000. Lithium isotopic compositions of pore fluids and sediments in the Costa Rica subduction zone: implications for fluid processes and sediment contribution to the arc volcanoes. Earth Planet. Sci. Lett., 183(1–2):275–290. doi:10.1016/S0012-821X(00)00275-2

D'Hondt, S., Rutherford, S., and Spivack., A.J., 2002. Metabolic activity of the subsurface life in deep-sea sediments. Science, 295(5562):2067–2070. doi:10.1126/science.1064878

Edmond, J.M., Measures, C., McDuff, R.E., Chan, L.H., Collier, R., Grant, B., Gordon, L.I., and Corliss, J.B., 1979. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet. Sci. Lett., 46(1):1–18. doi:10.1016/0012-821X(79)90061-X

Erickson, S.N., and Jarrard, R.D., 1998. Velocity-porosity relationships for water-saturated siliciclastic sediments. J. Geophys. Res., 103(B12):30385–30406. doi:10.1029/98JB02128

Expedition 319 Scientists, 2010. Site C0011. In Saffer, D., McNeill, L., Byrne, T., Araki, E., Toczko, S., Eguchi, N., Takahashi, K., and the Expedition 319 Scientists, Proc. IODP, 319: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.319.105.2010

Fabian, K., McEnroe, S.A., Robinson, P., and Shcherbakov, V.P., 2008. Exchange bias indentifies lamellar magnetism as the origin of the natural remanent magnetization in titanohematite with ilmenite exsolution from Modum, Norway. Earth Planet. Sci. Lett., 268(3–4):339–353. doi:10.1016/j.epsl.2008.01.034

Felix, M., and Peakall, J., 2006. Transformation of debris flows into turbidity currents: mechanisms inferred from laboratory experiments. Sedimentology, 53(1):107–123. doi:10.1111/j.1365-3091.2005.00757.x

Freundt, A., 2003. Entrance of hot pyroclastic flows into the sea: experimental observations. Bull. Volcanol., 65(2–3):144–164. doi:10.1007/s00445-002-0250-1

Freundt, A., and Schmincke, H.-U., 1998. Emplacement of ash layers related to high-grade ignimbrite P1 in the sea around Gran Canaria. In Weaver, P.P.E., Schmincke, H.-U., Firth, J.V., and Duffield, W. (Eds.), Proc. ODP, Sci. Results, 157: College Station, TX (Ocean Drilling Program), 201–218. doi:10.2973/odp.proc.sr.157.112.1998

Fulthorpe, C.S., and Blum, P. (Eds.), 1992. Ocean Drilling Program guidelines for pollution prevention and safety. JOIDES J., 18(7). http://www.odplegacy.org/PDF/Admin/
JOIDES_Journal/JJ_1992_V18_No7.pdf

Gieskes, J.M., Blanc, G., Vrolijk, P., Elderfield, H., and Barnes, R., 1990. Interstitial water chemistry—major constituents. In Moore, J.C., Mascle, A., et al., Proc. ODP, Sci. Results, 110: College Station, TX (Ocean Drilling Program), 155–178. doi:10.2973/odp.proc.sr.110.170.1990

Hinrichs, K.-U., Hayes, J.M., Bach, W., Spivack, A.J., Hmelo, L.R., Holm, N.G., Johnson, C.G., and Sylva, S.P., 2006. Biological formation of ethane and propane in the deep marine subsurface. Proc. Nat. Acad. Sci., 103(40):14684–14689. doi:10.1073/pnas.0606535103

Hoffman, N.W., and Tobin, H.J., 2004. An empirical relationship between velocity and porosity for underthrust sediments in the Nankai Trough accretionary prism. In Mikada, H., Moore, G.F., Taira, A., Becker, K., Moore, J.C., and Klaus, A. (Eds.), Proc. ODP, Sci. Results, 190/196: College Station, TX (Ocean Drilling Program), 1–23. doi:10.2973/odp.proc.sr.190196.355.2004

Hoshi, H., Sumii, A., and Shinsei, H., 2007. Miocene igneous activity and tectonics in the Kii Peninsula. Chishitsugaku Zasshi, 113(7):281–282.

Ienaga, M., McNeill, L.C., Mikada, H., Saito, S., Goldberg, D., and Moore, J.C., 2006. Borehole image analysis of the Nankai accretionary wedge, ODP Leg 196: structural and stress studies. Tectonophysics, 426(1–2):207–220. doi:10.1016/j.tecto.2006.02.018

Ike, T., Moore, G.F., Kuramoto, S., Park, J-O., Kaneda, Y., and Taira, A., 2008a. Tectonics and sedimentation around Kashinosaki Knoll: a subducting basement high in the eastern Nankai Trough. Isl. Arc, 17(3):358–375. doi:10.1111/j.1440-1738.2008.00625.x

Ike, T., Moore, G.F., Kuramoto, S., Park, J.-O., Kaneda, Y., and Taira, A., 2008b. Variations in sediment thickness and type along the northern Philippine Sea plate at the Nankai Trough. Isl. Arc, 17(3):342–357. doi:10.1111/j.1440-1738.2008.00624.x

Ishizuka, O., Uto, K., Makoto, Y., and Hochstaedter, A.G., 1998. K-Ar ages from seamount chains in the back-arc region of the Izu-Ogasawara arc. Isl. Arc, 7(3):408–421. doi:10.1111/j.1440-1738.1998.00199.x

Ishizuka, O., Uto, K., and Yuasa, M., 2003. Volcanic history of the back-arc region of the Izu-Bonin (Ogasawara) arc. In Larter, R.D., and Leat, P.T. (Eds.), Tectonic and Magmatic Processes. Geol. Soc. Spec. Publ., 219(1):187–205. doi:10.1144/GSL.SP.2003.219.01.09

Johnson, J.W., Oelkers, E.H., and Helgeson, H.C., 1992. SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Comput. Geosci., 18(7):899–947. doi:10.1016/0098-3004(92)90029-Q

Jordanova, D., Jordanova, N., Henry, B., Hus, J., Bascou, J., Funaki, M., and Dimov, D., 2007. Changes in mean magnetic susceptibility and its anisotropy of rock samples as a result of alternating field demagnetization. Earth Planet. Sci. Lett., 255(3–4):390–401. doi:10.1016/j.epsl.2006.12.025

Kimura, J.-I., Stern, R.J., and Yoshida, T., 2005. Reinitiation of subduction and magmatic responses in SW Japan during Neogene time. Geol. Soc. Am. Bull., 117(7–8):969–986. doi:10.1130/B25565.1

Kinoshita, M., Tobin, H., Moe, K.T., and the Expedition 314 Scientists, 2008. NanTroSEIZE Stage 1A: NanTroSEIZE LWD transect. IODP Prel. Rept., 314. doi:10.2204/iodp.pr.314.2008

Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. R. Astron. Soc., 62(3):699–718. doi:10.1111/j.1365-246X.1980.tb02601.x

Lallemant, S., Chamot-Rooke, N., Le Pichon, X., and Rangin, C., 1989. Zenisu Ridge: a deep intraoceanic thrust related to subduction, off southwest Japan. Tectonophysics, 160(1–4):151–153, 157–174. doi:10.1016/0040-1951(89)90389-2

Lawrence, J.R., and Gieskes, J.M., 1981. Constraints on water transport and alteration in the oceanic crust from the isotopic composition of pore water. J. Geophys. Res., 86(B9):7924–7934. doi:10.1029/JB086iB09p07924

Le Pichon, X., Iiyama, T., Chamley, H., Charvet, J., Faure, M., Fujimoto, H., Furuta, T., Ida, Y., Kagami, H., Lallemant, S., Leggett, J., Murata, A., Okada, H., Rangin, C., Renard, V., Taira, A., and Tokuyama, H., 1987. Nankai Trough and the fossil Shikoku Ridge: results of Box 6 Kaiko survey. Earth Planet. Sci. Lett., 83(1–4):186–198. doi:10.1016/0012-821X(87)90065-3

Lourens, L.J., Hilgen, F.J., Shackleton, N.J., Laskar, J., and Wilson, D., 2004. The Neogene period. In Gradstein, F.M., Ogg, J.G., and Smith, A.G. (Eds.), A Geological Time Scale 2004. Cambridge (Cambridge Univ. Press), 409–440.

Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys. Res. Lett., 17:159–162.

Machida, S., Ishii, T., Kimura, J.-I., Awaji, S., and Kato, Y., 2008. Petrology and geochemistry of cross-chains in the Izu-Bonin back arc: three mantle components with contributions of hydrous liquids from a deeply subducted slab. Geochem., Geophys., Geosyst., 9(5):Q05002. doi:10.1029/2007GC001641

Maltman, A.J., Byrne, T., Karig, D.E., Lallemant, S., Knipe, R., and Prior, D., 1993. Deformation structures at Site 808, Nankai accretionary prism, Japan. In Hill, I.A., Taira, A., Firth, J.V., et al., Proc. ODP, Sci. Results, 131: College Station, TX (Ocean Drilling Program), 123–133. doi:10.2973/odp.proc.sr.131.110.1993

Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. Proc. Int. Conf. Planktonic Microfossils, 2:739–785.

Mastbergen, D.R., and Van Den Berg, J.H., 2003. Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology, 50(4):625–637. doi:10.1046/j.1365-3091.2003.00554.x

McNeill, L.C., Ienaga, M., Tobin, H., Saito, S., Goldberg, D., Moore, J.C., and Mikada, H., 2004. Deformation and in situ stress in the Nankai accretionary prism from resistivity-at-bit images, ODP Leg 196. Geophys. Res. Lett., 31(2):L02602. doi:10.1029/2003GL018799

Mikada, H., Becker, K., Moore, J.C., Klaus, A., et al., 2002. Proc. ODP, Init. Repts., 196: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.196.2002

Moore, G.F., Taira, A., Klaus, A., et al., 2001. Proc. ODP, Init. Repts., 190: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.190.2001

Mulder, T., and Syvitski, J.P.M., 1995. Turbidity currents generated at river mouths during exceptional discharge to the world oceans. J. Geol., 103(3):285–299. doi:10.1086/629747

Nagata, T., Akimoto, S., and Uyeda, S., 1951. Reverse thermo-remanent magnetism. Proc. Jpn. Acad., 27:643–645.

Naruse, H., Sequeiros, O., Garcia, M.H., Parker, G., Endo, N., Kataoka, K.S., Yokokawa, M., and Muto, T., 2008. Self-accelerating turbidity currents at laboratory scale. In Dohmen-Janssen, C.M., and Hulscher, S.J.M.H. (Eds.), River, Coastal, and Estuarine Morphodynamics (RCEM 2007): London (Routledge Taylor and Francis Group).

Okino, K., Ohara, Y., Kasuga, S., and Kato, Y., 1999. The Philippine Sea: new survey results reveal the structure and the history of marginal basins. Geophys. Res. Lett., 26(15):2287–2290. doi:10.1029/1999GL900537

Okino, K., Shimakawa, Y., and Nagaoka, S., 1994. Evolution of the Shikoku Basin. J. Geomag. Geoelectr., 46:463–479.

Oremland, R.S., Whiticar, M.J., Strohmaier, F.E., and Kiene, R.P., 1988. Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments. Geochim. Cosmochim. Acta, 52(7):1895–1904. doi:10.1016/0016-7037(88)90013-0

Pantin, H.M., 1979. Interaction between velocity and effective density in turbidity flow: phase-plane analysis, with criteria for auto suspension. Mar. Geol., 31(1–2):59–99. doi:10.1016/0025-3227(79)90057-4

Park, J.-O., Tsuru, T., No, T., Takizawa, K., Sato, S., and Kaneda, Y., 2008. High-resolution 3D seismic reflection survey and prestack depth imaging in the Nankai Trough off southeast Kii Peninsula. Butsuri Tansa, 61:231–241. (in Japanese, with abstract in English)

Parker, G., 1982. Conditions for the ignition of catastrophically erosive turbidity currents. Mar. Geol., 46(3–4):307–327. doi:10.1016/0025-3227(82)90086-X

Parkes, R.J., Webster, G., Cragg, B.A., Weightman, A.J., Newberry, C.J., Ferdelman, T.G., Kallmeyer, J., Jørgensen, B.B., Aiello, I.W., and Fry, J.C., 2005. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature (London, U. K.), 436(7049):390–394. doi:10.1038/nature03796

Parkhurst, D.L., and Appelo, C.A.J., 1999. User's guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations. USGS Water-Resour. Invest. Rep., 99–4259.

Pimmel, A., and Claypool, G., 2001. Introduction to shipboard organic geochemistry on the JOIDES Resolution. ODP Tech. Note, 30. doi:10.2973/odp.tn.30.2001

Plank, T., and Langmuir, C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol., 145(3–4):325–394. doi:10.1016/S0009-2541(97)00150-2

Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L., and Hilgen, F., 2006. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev., 25(23–24):3113–3137. doi:10.1016/j.quascirev.2006.07.007

Rubey, W.W., and Hubbert, M.K., 1959. Role of fluid pressure in mechanics of overthrust faulting, Part 2. Overthrust belt in geosynclinal area of western Wyoming in light of fluid-pressure hypothesis. Geol. Soc. Am. Bull., 70(2):167–206. doi: 10.1130/0016-7606(1959)70[167:ROFPIM]2.0.CO;2

Saffer, D.M., and McKiernan, A.W., 2009. Evaluation of in situ smectite dehydration as a pore water freshening mechanism in the Nankai Trough, offshore southwest Japan. Geochem., Geophys., Geosyst., 10(2):Q02010. doi:10.1029/2008GC002226

Saffer, D.M., Underwood, M.B., and McKiernan, A.W., 2008. Evaluation of factors controlling smectite transformation and fluid production in subduction zones: application to the Nankai Trough. Isl. Arc, 17(2):208–230. doi:10.1111/j.1440-1738.2008.00614.x

Saito, S., Underwood, M.B., and Kubo, Y., 2009. NanTroSEIZE Stage 2: subduction inputs. IODP Sci. Prosp., 322. doi:10.2204/iodp.sp.322.2009

Sdrolias, M., Roest, W.R., and Müller, R.D., 2004. An expression of Philippine Sea plate rotation: the Parece Vela and Shikoku basins. Tectonophysics, 394(1–2):69–86. doi:10.1016/j.tecto.2004.07.061

Seyfried, W.E., Jr., Janecky, D.R., and Mottl, M.J., 1984. Alteration of the oceanic crust: implications for geochemical cycles of lithium and boron. Geochim. Cosmochim. Acta, 48(3):557–569. doi:10.1016/0016-7037(84)90284-9

Shipboard Scientific Party, 1995. Site 909. In Myhre, A.M., Thiede, J., Firth, J.V., et al., Proc. ODP, Init. Repts., 151: College Station, TX (Ocean Drilling Program), 159–220. doi:10.2973/odp.proc.ir.151.107.1995

Shipboard Scientific Party, 2001a. Leg 190 summary. In Moore, G.F., Taira, A., Klaus, A., et al., Proc. ODP, Init. Repts., 190: College Station, TX (Ocean Drilling Program), 1–87. doi:10.2973/odp.proc.ir.190.101.2001

Shipboard Scientific Party, 2001b. Site 1177. In Moore, G.F., Taira, A., Klaus, A., et al., Proc. ODP, Init. Repts., 190: College Station, TX (Ocean Drilling Program), 1–91. doi:10.2973/odp.proc.ir.190.108.2001

Shipboard Scientific Party, 2002. Leg 196 summary: deformation and fluid flow processes in the Nankai Trough accretionary prism: logging while drilling and Advanced CORKs. In Mikada, H., Becker, K., Moore, J.C., Klaus, A., et al., Proc. ODP, Init. Repts., 196: College Station, TX (Ocean Drilling Program), 1–29. doi:10.2973/odp.proc.ir.196.101.2002

Spinelli, G.A., Mozley, P.S., Tobin, H.J., Underwood, M.B., Hoffman, N.W., and Bellew, G.M., 2007. Diagenesis, sediment strength, and pore collapse in sediment approaching the Nankai Trough subduction zone. Geol. Soc. Am. Bull., 119(3–4):377–390. doi:10.1130/B25920.1

Steurer, J.F., and Underwood, M.B., 2003. Clay mineralogy of mudstones from the Nankai Trough reference Sites 1173 and 1177 and frontal accretionary prism Site 1174. In Mikada, H., Moore, G.F., Taira, A., Becker, K., Moore, J.C., and Klaus, A. (Eds.), Proc. ODP, Sci. Results, 190/196: College Station, TX (Ocean Drilling Program), 1–37. doi:10.2973/odp.proc.sr.190196.211.2003

Stow, D.A.V., Taira, A., Ogawa, Y., Soh, W., Taniguchi, H., and Pickering, K.T., 1998. Volcaniclastic sediments, process interaction and depositional setting of the Mio-Pliocene Miura Group, SE Japan. Sediment. Geol., 115(1–4):351–381. doi:10.1016/S0037-0738(97)00100-0

Taira, A., Hill, I., Firth, J.V., et al., 1991. Proc. ODP, Init. Repts., 131: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.131.1991

Tobin, H., Kinoshita, M., Ashi, J., Lallemant, S., Kimura, G., Screaton, E.J., Moe, K.T., Masago, H., Curewitz, D., and the Expedition 314/315/316 Scientists, 2009. NanTroSEIZE Stage 1 expeditions: introduction and synthesis of key results. In Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, Proc. IODP, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.101.2009

Trofimovs, J., Amy, L., Boudon, G., Deplus, C., Doyle, E., Fournier, N., Hart, M.B., Komorowski, J.C., Le Friant, A., Lock, E.J., Pudsey, C., Ryan, G., Sparks, R.S.J., and Talling, P.J., 2006. Submarine pyroclastic deposits formed at the Soufrière Hills Volcano, Montserrat (1995–2003): what happens when pyroclastic flows enter the ocean? Geology, 34(7):549–552. doi:10.1130/G22424.1

Ujiie, K., Maltman, A.J., and Sánchez-Gómez, M., 2004. Origin of deformation bands in argillaceous sediments at the toe of the Nankai accretionary prism, southwest Japan. J. Struct. Geol., 26(2):221–231. doi:10.1016/j.jsg.2003.06.001

Vogel, T.M., Oremland, R.S., and Kvenvolden, K.A., 1982. Low-temperature formation of hydrocarbon gases in San Francisco Bay sediment (California, U.S.A.). Chem. Geol., 37(3–4):289–298. doi:10.1016/0009-2541(82)90084-5

Wiesenburg, D.A., Brooks, J.M., and Bernard, B.B., 1985. Biogenic hydrocarbon gases and sulfate reduction in the Orca Basin brine. Geochim. Cosmochim. Acta, 49(10):2069–2080. doi:10.1016/0016-7037(85)90064-X

Yamamoto, Y., Mukoyoshi, H., and Ogawa, Y., 2005. Structural characteristics of shallowly buried accretionary prism: rapidly uplifted Neogene accreted sediments on the Miura-Boso Peninsula, central Japan. Tectonics, 24(5):TC5008. doi:10.1029/2005TC001823

You, C.-F., Chan, L.H., Spivack, A.J., and Gieskes, J.M., 1995. Lithium, boron, and their isotopes in sediments and pore waters of Ocean Drilling Program Site 808, Nankai Trough: implications for fluid expulsion in accretionary prisms. Geology, 23(1):37–40. doi:10.1130/0091-7613(1995)023<0037:LBATII>2.3.CO;2

Zapletal, K., 1992. Self-reversal of isothermal remanent magnetization in a pyrrhotite (Fe7S8) crystal. Phys. Earth Planet. Inter., 70(3–4):302–311. doi:10.1016/0031-9201(92)90196-3

Zijderveld, J.D.A., 1967. AC demagnetization of rocks: analysis of results. In Collinson, D.W., Creer, K.M., and Runcorn, S.K. (Eds.), Methods in Palaeomagnetism: New York (Elsevier), 254–286.