IODP publications Expeditions Data & samples Policies News & photos Search | |||
|
doi:10.2204/iodp.pr.342.2012 ReferencesAdams, D.D., Hurtgen, M.T., and Sageman, B.B., 2010. Volcanic triggering of a biogeochemical cascade during oceanic anoxic Event 2. Nat. Geosci., 3(3):201–204. doi:10.1038/ngeo743 Agnini, C., Fornaciari, E., Giusberti, L., Grandesso, P., Lanci, L., Luciani, V., Muttoni, G., Pälike, H., Rio, D., Spofforth, D.J.A, and Stefani, C., 2011. Integrated biomagnetostratigraphy of the Alano section (NE Italy): a proposal for defining the middle-late Eocene boundary. Geol. Soc. Am. Bull., 123(5–6):841–872. doi:10.1130/B30158.1 Alegret, L., and Thomas, E., 2009. Food supply to the seafloor in the Pacific Ocean after the Cretaceous/Paleogene boundary event. Mar. Micropaleontol., 73(1–2):105–116. doi:10.1016/j.marmicro.2009.07.005 Alley, R.B., and Clark, P.U., 1999. The deglaciation of the northern hemisphere: a global perspective. Annu. Rev. Earth Planet. Sci., 27(1):149–182. doi:10.1146/annurev.earth.27.1.149 Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V., 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208(4448):1095–1108. doi:10.1126/science.208.4448.1095 Alvarez, W., Alvarez, L.W., Asaro, F., and Michel, H.V., 1984. The end of the Cretaceous: sharp boundary or gradual transition? Science, 223(4641):1183–1186. doi:10.1126/science.223.4641.1183 Archer, D., Lyle, M., Rodgers, K., and Froelich, P., 1993. What controls opal preservation in tropical deep-sea sediments? Paleoceanography, 8(1):7. doi:10.1029/92PA02803 Arthur, M.A., Dean, W.E., and Pratt, L.M., 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature (London, U. K.), 335(6192):714–717. doi:10.1038/335714a0 Arthur, M.A., and Premoli-Silva, I., 1982. Development of widespread organic carbon-rich strata in the Mediterranean Tethys. In Schlanger, S.O., and Cita, M.B. (Eds.), Nature and Origin of Cretaceous Carbon-Rich Facies: London (Academic Press), 7–54. Arthur, M.A., Schlanger, S.O., and Jenkyns, H.C., 1987. The Cenomanian–Turonian oceanic anoxic event, II. Palaeoceanographic controls on organic matter production and preservation. In Brooks, J., and Fleet, A.J. (Eds.), Marine Petroleum Source Rocks. Geol. Soc. Spec. Publ., 26(1):401–420. doi:10.1144/GSL.SP.1987.026.01.25 Arthur, M.A., Srivastava, S.P., Kaminski, M., Jarrard, R., and Osler, J., 1989. Seismic stratigraphy and history of deep circulation and sediment drift development in Baffin Bay and the Labrador Sea. In Srivastava, S.P., Arthur, M.A., Clement, B., et al., Proc. ODP, Sci. Results, 105: College Station, TX (Ocean Drilling Program), 957–988. doi:10.2973/odp.proc.sr.105.118.1989 Aubry, M.-P., 1995. From chronology to stratigraphy: interpreting the lower and middle Eocene stratigraphic record in the Atlantic Ocean. In Berggren, W.A., Kent, D.V., Aubry, M.-P., and Hardenbol, J. (Eds.), Geochronology, Time Scales, and Global Stratigraphic Correlation: A Unified Temporal Framework for an Historical Geology. Spec. Publ.—SEPM (Soc. Sediment. Geol.), 54:213–274. Backman, J., Moran, K., McInroy, D., and the IODP Expedition 302 Scientists, 2005. IODP Expedition 302, Arctic Coring Expedition (ACEX): a first look at the Cenozoic paleoceanography of the central Arctic Ocean. Sci. Drill., 1:12–17. doi:10.2204/iodp.sd.1.02.2005 Bailey, I., Bolton, C.T., DeConto, R.M., Pollard, D., Schiebel, R., and Wilson, P.A., 2010. A low threshold for North Atlantic ice rafting from “low-slung slippery” late Pliocene ice sheets. Paleoceanography, 25(1):PA1212. doi:10.1029/2009PA001736 Bailey, I., Foster, G.L., Wilson, P.A., Jovane, L., Storey, C.D., Trueman, C.N., and Becker, J., 2012. Flux and provenance of ice-rafted debris in the earliest Pleistocene sub-polar North Atlantic Ocean comparable to the Last Glacial Maximum. Earth Planet. Sci. Lett., 341–344. doi:10.1016/j.epsl.2012.05.034 Bailey, I., Liu, Q., Swann, G.E.A., Jiang, Z., Sun, Y., Zhao, X., and Roberts, A.P., 2011. Iron fertilisation and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of northern hemisphere glaciation. Earth Planet. Sci. Lett., 307(3–4)253–265. doi:10.1016/j.epsl.2011.05.029 Barclay, R.S., McElwain, J.C., and Sageman, B.B., 2010. Carbon sequestration activated by a volcanic CO2 pulse during oceanic anoxic Event 2. Nat. Geosci., 3(3):205–208. doi:10.1038/ngeo757 Barrera, E., and Savin, S.M., 1999. Evolution of Campanian–Maastrichtian marine climates and oceans. In Barrera, E., and Johnson, C.C. (Eds.), Evolution of the Cretaceous Ocean-Climate System. Spec. Pap.—Geol. Soc. Am., 332:245–282. doi:10.1130/0-8137-2332-9.245 Barrera, E., Savin, S.M., Thomas, E., and Jones, C.E., 1997. Evidence for thermohaline-circulation reversals controlled by sea level change in the latest Cretaceous. Geology, 25(8):715–718. doi:10.1130/0091-7613(1997)025<0715:EFTCRC>2.3.CO;2 Bekins, B.A., and Dreiss, S.J., 1992. A simplified analysis of parameters controlling dewatering in accretionary prisms. Earth Planet. Sci. Lett., 10(3–4)9:275–287. doi:10.1016/0012-821X(92)90092-A Berger, W.H., 1970. Biogenous deep-sea sediments: fractionation by deep-sea circulation. Geol. Soc. Am. Bull., 81(5):1385–1402. doi:10.1130/0016-7606(1970)81[1385:BDSFBD]2.0.CO;2 Berggren, W.A., Aubry, M.-P., van Fossen, M., Kent, D.V., Norris, R.D., and Quillévéré, F., 2000. Integrated Paleocene calcareous plankton magnetobiochronology and stable isotope stratigraphy: DSDP Site 384 (NW Atlantic Ocean). Palaeogeogr., Palaeoclimatol., Palaeoecol., 159(1–2):1–51. doi:10.1016/S0031-0182(00)00031-6 Berggren, W.A., and Norris, R.D., 1997. Biostratigraphy, phylogeny and systematics of Paleocene trochospiral planktic foraminifera. Micropaleontology, 43 (Suppl. 1):1–116. doi:10.2307/1485988 Bernaola, G., Baceta, J.I., Orue-Etxebarria, X., Alegret, L., Martin-Rubio, M., Arostegui, J., and Dinarès-Turell, J., 2007. Evidence of an abrupt environmental disruption during the mid-Paleocene biotic event (Zumaia section, western Pyrenees). Geol. Soc. Am. Bull., 119(7–8):785–795. doi:10.1130/B26132.1 Bice, K.L., Barron, E.J., and Peterson, W.H., 1997. Continental runoff and early Cenozoic bottom-water sources. Geology, 25(10):951–954. doi:10.1130/0091-7613(1997)025<0951:CRAECB>2.3.CO;2 Bice, K.L., and Marotzke, J., 2001. Numerical evidence against reversed thermohaline circulation in the warm Paleocene/Eocene ocean. J. Geophys. Res., [Oceans], 106(C6):11529–11542. doi:10.1029/2000JC000561 Bice, K.L., and Marotzke, J., 2002. Could changing ocean circulation have destabilized methane hydrate at the Palaeocene/Eocene boundary? Paleoceanography, 17(2):1018–1039. doi:10.1029/2001PA000678 Bijl, P.K., Houben, A.J.P., Schouten, S., Bohaty, S.M., Sluijs, A., Reichart, G.-J., Sinninghe Damsté, J.S., and Brinkhuis, H., 2010. Transient middle Eocene atmospheric CO2 and temperature variations. Science, 330(6005):819–821. doi:10.1126/science.1193654 Billups, K., Pälike, H., Channell, J.E.T., Zachos, J.C., and Shackleton, N.J., 2004. Astronomic calibration of the late Oligocene through early Miocene geomagnetic polarity time scale. Earth Planet. Sci. Lett., 224(1–2):33–44. doi:10.1016/j.epsl.2004.05.004 Boehm, A., and Moore, J.C., 2002. Fluidized sandstone intrusions as an indicator of paleostress orientation, Santa Cruz, California. Geofluids, 2(2):147–161. doi:10.1046/j.1468-8123.2002.00026.x Bohaty, S.M., and Zachos, J.C., 2003. Significant Southern Ocean warming event in the late middle Eocene. Geology, 31(11):1017–1020. doi:10.1130/G19800.1 Bohaty, S.M., Zachos, J.C., Florindo, F., and Delaney, M.L., 2009. Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography, 24(2):PA2207. doi:10.1029/2008PA001676 Bombolakis, E.G., 1981. Analysis of a horizontal catastrophic landslide. In Carter, N.L., Friedman, M., Logan, J.M., and Stearns, D.W. (Eds.), Mechanical Behavior of Crustal Rocks. Geophys. Monogr., 24:251–258. doi:10.1029/GM024p0251 Bond, G.C., and Lotti, R., 1995. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science, 276(5200):1005–1010. doi:10.1126/science.267.5200.1005 Bornemann, A., Schulte, P., Sprong, J., Steurbaut, E., Youssef, M., and Speijer, R.P., 2009. Latest Danian carbon isotope anomaly and associated environmental change in the southern Tethys (Nile Basin, Egypt). J. Geol. Soc., 166(6):1135–1142. doi:10.1144/0016-76492008-104 Boulila, S., Galbrun, B., Miller, K.G., Pekar, S.F., Browning, J.V., Laskar, J., and Wright, J.D., 2011. On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences. Earth-Sci. Rev., 109(3–4):94–112. doi:10.1016/j.earscirev.2011.09.003 Bown, P., 2005. Selective calcareous nannoplankton survivorship at the Cretaceous–Tertiary Boundary. Geology, 33(8):653–656. http://geology.gsapubs.org/content/33/8/653.full.pdf.html Bown, P.R., 2005. Palaeogene calcareous microfossils from the Kilwa and Lindi areas of coastal Tanzania (Tanzania Drilling Project 2003–4). J. Nannoplankton Res., 27(1):21–95. Bown, P.R., Dunkley Jones, T., Lees, J.A., Randell, R.D., Mizzi, J.A., Pearson, P.N., Coxall, H.K., Young, J.R., Nicholas, C.J., Karega, A., Singano, J., and Wade, B.S., 2008. A Paleogene calcareous microfossil Konservat-Lagerstätte from the Kilwa Group of coastal Tanzania: Geol. Soc. Am. Bull., 120(1–2):3–12. doi:10.1130/B26261.1 Bralower, T.J., Premoli Silva, I., Malone, M.J., et al., 2002. Proc. ODP, Init. Repts., 198: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.198.2002 Brass, G.W., Southam, J.R., and Peterson, W.H., 1982. Warm saline bottom water in the ancient ocean. Nature (London, U. K.), 296(5858):620–623. doi:10.1038/296620a0 Brassell, S.C., 1984. Aliphatic hydrocarbons of a Cretaceous black shale and its adjacent green claystone from the southern Angola Basin, Deep Sea Drilling Project, Leg 75. In Hay, W.W., Sibuet, J.C., et al., Init. Repts. DSDP, 75: Washington, DC (U.S. Govt. Printing Office), 1019–1030. doi:10.2973/dsdp.proc.75.133.1984 Brinkhuis, H., Schouten, S., Collinson, M.E., Sluijs, A., Sinninghe Damsté, J.S., Dickens, G.R., Huber, M., Cronin, T.M., Onodera, J., Takahashi, K., Bujak, J.P., Stein, R., van der Burgh, J., Eldrett, J.S., Harding, I.C., Lotter, A.F., Sangiorgi, F., van Konijnenburg-van Cittert, H., de Leeuw, J.W., Matthiessen, J., Backman, J., Moran, K., and the Expedition 302 Scientists, 2006. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature (London, U. K.), 441(7093):606–609. doi:10.1038/nature04692 Channell, J.E.T., Hodell, D.A., Romero, O., Hillaire-Marcel, C., de Vernal, A., Stoner, J.S., Mazaud, A., and Röhl, U., 2012. A 750 k.y. detrital-layer stratigraphy for the North Atlantic (IODP Sites U1302–U1303, Orphan Knoll, Labrador Sea). Earth Planet. Sci. Lett., 317–318:218–230. doi:10.1016/j.epsl.2011.11.029 Channell, J.E.T., Sato, T., Kanamatsu, T., Stein, R., and Alvarez Zarikian, C., 2010. Expediiton 303/306 synthesis: North Atlantic climate. In Channell, J.E.T., Kanamatsu, T., Sato, T., Stein, R., Alvarez Zarikian, C.A., Malone, M.J., and the Expedition 303/306 Scientists, Proc. IODP, 303/306: College Station, TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.303306.214.2010 Claeys, P., Kiessling, W., and Alvarez, W., 2002. Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary. In Koeberl, C., and MacLeod, K.G. (Eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond. Spec. Pap.—Geol. Soc. Am., 356:55–68. doi:10.1130/0-8137-2356-6.55 Colosimo, A.B., Bralower, T.J., and Zachos, J.C., 2006. Evidence for lysocline shoaling at the Paleocene/Eocene Thermal Maximum on Shatsky Rise, northwest Pacific. In Bralower, T.J., Premoli Silva, I., and Malone, M.J. (Eds.), Proc. ODP, Sci. Results, 198: College Station, TX (Ocean Drilling Program), 1–36. doi:10.2973/odp.proc.sr.198.112.2006 Coxall, H.K., D’Hondt, S., and Zachos, J.C., 2006. Pelagic evolution and environmental recovery after the Cretaceous–Paleogene mass extinction. Geology, 34(4):297–300. doi:10.1130/G21702.1 Coxall, H.K., and Wilson, P.A., 2011. Early Oligocene glaciation and productivity in the eastern equatorial Pacific: insights into global carbon cycling. Paleoceanography, 26(2):PA2221. doi:10.1029/2010PA002021 Coxall, H.K., Wilson, P.A., Pälike, H., Lear, C.H., and Backman, J., 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature (London, U. K.), 433(7021):53–57. doi:10.1038/nature03135 Cramer, B.S., Wright, J.D., Kent, D.V., and Aubry, M.-P., 2003. Orbital climate forcing of δ13C excursions in the late Paleocene–early Eocene (Chrons C24n–C25n). Paleogeography, 18(4):1097–1122. doi:10.1029/2003PA000909 Curry, W.B., Shackleton, N.J., Richter, C., et al., 1995. Proc. ODP, Init. Repts., 154: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.154.1995 Dahlen, F.A., Suppe, J., and Davis, D., 1984. Mechanics of fold-and-thrust belts and accretionary wedges: cohesive Coulomb theory. J. Geophys. Res., [Solid Earth], 89(B12):10087–10101. doi:10.1029/JB089iB12p10087 Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., and Bond, G., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature (London, U. K.), 364(6434):218–220. doi:10.1038/364218a0 Davies, R., Cartwright, J., Pike, J., and Line, C., 2001. Early Oligocene initiation of North Atlantic Deep Water formation. Nature (London, U. K.), 410(6831):917–920. doi:10.1038/35073551 Davis, D., Suppe, J., and Dahlen, F.A., 1983. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res., [Solid Earth], 88(B2):1153–1172. doi:10.1029/JB088iB02p01153 Dean, W.E., and Arthur, M.A., 1987. Inorganic and organic geochemistry of Eocene to Cretaceous strata recovered from the lower continental rise, North American Basin, Site 603, Deep Sea Drilling Project Leg 93. Init. Repts. DSDP, 93: Washington, DC (U.S. Govt. Printing Office), 1093–1137. doi:10.2973/dsdp.proc.93.146.1987 de Graciansky, P.C., and Bourbon, M., 1985. The Goban Spur of the northeast Atlantic margin during Late Cretaceous times. In de Graciansky, P.C., Poag, C.W., et al., Init. Repts. DSDP, 80: Washington, DC (U.S. Govt. Printing Office), 863–883. doi:10.2973/dsdp.proc.80.137.1985 DeConto, R.M., Galeotti, S., Pagani, M., Tracy, D., Schafer, K., Zhang, T., Pollard, D., and Beerling, D.J., 2012. Past extreme warming events linked to massive carbon release from thawing permafrost. Nature (London, U. K.), 484(7392):87–91. doi:10.1038/nature10929 DeConto, R.M., and Pollard, D., 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature (London, U. K.), 421(6920):245–249. doi:10.1038/nature01290 DeConto, R.M., Pollard, D., Wilson, P.A., Palike, H., Lear, C.H., and Pagani, M., 2008. Thresholds for Cenozoic bipolar glaciation. Nature (London, U. K.), 455(7213):652–656. doi:10.1038/nature07337 D’Hondt, S., 2005. Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu. Rev. Ecol. Evol. Syst., 36(1):295–317. doi:10.1146/annurev.ecolsys.35.021103.105715 Dickens, G.R., 2011. Down the rabbit hole: toward appropriate discussion of methane hydrate release from gas hydrate systems during the Paleocene/Eocene Thermal Maximum and other past hydrothermal events. Clim. Past, 7(3):831–846. doi:10.5194/cp-7-831-2011 Dickens, G.R., Castillo, M.M., and Walker, J.C.G., 1997. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 25(3):259–262. doi:10.1130/0091-7613(1997)025<0259:ABOGIT>2.3.CO;2 Dillon, W.P., Nealon, J.W., Taylor, M.H., Lee, M.W., Drury, R.M., and Anton, C.H., 2000. Seafloor collapse and methane venting associated with gas hydrate on the Blake Ridge: causes and implications to seafloor stability and methane release. In Paull, C.K., and Dillon, W.P. (Eds.), Natural Gas Hydrates: Occurrence, Distribution, and Detection. Geophys. Monogr., 124:211–233. doi:10.1029/GM124p0211 Dugan, B., and Flemings, P.B., 2000. Overpressure and fluid flow in the New Jersey continental slope: implications for slope failure and cold seeps. Science, 289(5477):288–291. doi:10.1126/science.289.5477.288 Dugan, B., and Flemings, P.B., 2002. Fluid flow and stability of the US continental slope offshore New Jersey from the Pleistocene to the present. Geofluids, 2(2):137–146. doi:10.1046/j.1468-8123.2002.00032.x Dunkley Jones, T., Bown, P.R., and Pearson, P.N., 2009. Exceptionally well preserved upper Eocene to lower Oligocene calcareous nannofossils (Prymnesiophycidae) from the Pande Formation (Kilwa Group), Tanzania. J. Syst. Palaeontol., 7(4):359–411. doi:10.1017/S1477201909990010 Dunkley Jones, T., Bown, P.R., Pearson, P.N., Wade, B.S., Coxall, H.K., and Lear, C.H. 2008. Major shifts in calcareous phytoplankton assemblages through the Eocene–Oligocene transition of Tanzania and their implications for low-latitude primary production. Paleoceanography, 23(4):PA4204. doi:10.1029/2008PA001640 Dunkley Jones, T., Ridgwell, A., Lunt, D.J., Maslin, M.A., Schmidt, D.N., and Valdes, P.J., 2010. A Palaeogene perspective on climate sensitivity and methane hydrate instability. Philos. Trans. R. Soc., A, 368(1919):2395–2415. doi:10.1098/rsta.2010.0053 Edgar, K.M., Bohaty, S.M., Gibbs, S.J., Sexton, P.F., Norris, R.D., and Wilson, P.A., in press. Symbiont “bleaching” in planktic foraminifera during the Middle Eocene Climatic Optimum. Geology. Edgar, K.M., Wilson, P.A., Sexton, P.F., Gibbs, S.J., Roberts, A.P., and Norris, R.D., 2010. New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene Climatic Optimum in low latitudes. Palaeogeogr., Palaeoclimatol., Palaeoecol., 297(3–4):670–682. doi:10.1016/j.palaeo.2010.09.016 Edgar, K.M., Wilson, P.A., Sexton, P.F., and Suganuma, Y., 2007. No extreme bipolar glaciation during the main Eocene calcite compensation shift. Nature (London, U. K.), 448(7156):908–911. doi:10.1038/nature06053 Eldrett, J.S., Greenwood, D.R., Harding, I.C., and Huber, M., 2009. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature (London, U. K.), 459(7249):969–973. doi:10.1038/nature08069 Eldrett, J.S., Harding, I.C., Wilson, P.A., Butler, E., and Roberts, A.P., 2007. Continental ice in Greenland during the Eocene and Oligocene. Nature (London, U. K.), 446(7132):176–179. doi:10.1038/nature05591 Erbacher, J., Friedrich, O., Wilson, P.A., Birch, H., and Mutterlose, J., 2005. Stable organic carbon isotope stratigraphy across oceanic anoxic Event 2 of Demerara Rise, western tropical Atlantic. Geochem., Geophys., Geosyst., 6(6):Q06010. doi:10.1029/2004GC000850 Erbacher, J., Mosher, D.C., Malone, M.J., et al., 2004. Proc. ODP, Init. Repts., 207: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.207.2004 Fagel, N., Robert, C., and Hillaire-Marcel, C., 1996. Clay mineral signature of the NW Atlantic boundary undercurrent. Mar. Geol., 130(1–2):19–28. doi:10.1016/0025-3227(95)00134-4 Fagel, N., Robert, C., Preda, M., and Thorez, J., 2001. Smectite composition as a tracer of deep circulation: the case of the northern North Atlantic. Mar. Geol., 172(3–4):309–330. doi:10.1016/S0025-3227(00)00123-7 Farley, K.A., and Eltgroth, S.F., 2003. An alternative age model for the Paleocene/Eocene Thermal Maximum using extraterrestrial 3He. Earth Planet. Sci. Lett., 208(3–4):135–148. doi:10.1016/S0012-821X(03)00017-7 Fisher, A.T., Wheat, C.G., Becker, K., Davis, E.E., Jannasch, H., Schroeder, D., Dixon, R., Pettigrew, T.L., Meldrum, R., McDonald, R., Nielsen, M., Fisk, M., Cowen, J., Bach, W., and Edwards, K., 2005. Scientific and technical design and deployment of long-term subseafloor observatories for hydrogeologic and related experiments, IODP Expedition 301, eastern flank of Juan de Fuca Ridge. In Fisher, A.T., Urabe, T., Klaus, A., and the Expedition 301 Scientists, Proc. IODP, 301: College Station, TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.301.103.2005 Flemings, P.B., Long, H., Dugan, B., Germaine, J., John, C.M., Behrmann, J.H., Sawyer, D., and IODP Expedition 308 Scientists, 2008. Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of Mexico. Earth Planet. Sci. Lett., 269(3–4):309–325. doi:10.1016/j.epsl.2007.12.005 Flemings, P.B., Stump, B.B., Finkbeiner, T., and Zoback, M., 2002. Flow focusing in overpressured sandstones: theory, observations, and applications. Am. J. Sci., 302:827–855. doi:10.2475/ajs.302.10.827 Flower, B.P., Zachos, J.C., and Martin, E., 1997. Latest Oligocene through early Miocene isotopic stratigraphy and deepwater paleoceanography of the western equatorial Atlantic: Sites 926 and 929. In Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J. (Eds.), Proc. ODP, Sci. Results, 154: College Station, TX (Ocean Drilling Program), 451–461. doi:10.2973/odp.proc.sr.154.142.1997 Folk, R.L., 1959. Practical petrographical classification of limestones. AAPG Bull., 43:1–38. Frank, T.D., and Arthur, M.A., 1999. Tectonic forcings of Maastrichtian ocean-climate evolution. Paleoceanography, 14(2):103–117. doi:10.1029/1998PA900017 Frank, T.D., Thomas, D.J., Leckie, R.M., Arthur, M.A., Bown, P.R., Jones, K., and Lees, J.A., 2005. The Maastrichtian record from Shatsky Rise (northwest Pacific): a tropical perspective on global ecological and oceanographic changes. Paleoceanography, 20:PA1008. doi:10.1029/2004PA001052 Friedrich, O., Erbacher, J., Moriya, K., Wilson, P.A., and Kuhnert, H., 2008. Warm saline intermediate waters in the Cretaceous tropical Atlantic Ocean. Nat. Geosci., 1(7):453–457. doi:10.1038/ngeo217 Friedrich, O., Herrle, J.O., Wilson, P.A., Cooper, M.J., Erbacher, J., and Hemleben, C., 2009. Early Maastrichtian carbon cycle perturbation and cooling event: implications from the South Atlantic Ocean. Paleoceanography, 24(2):PA2211. doi:10.1029/2008PA001654 Friedrich, O., Norris, R.D., and Erbacher, J., 2012. Evolution of middle to Late Cretaceous oceans—a 55 m.y. record of Earth’s temperature and carbon cycle. Geology, 40(2):107–110. doi:10.1130/G32701.1 Fuqua, L.M., Bralower, T.J., Arthur, M.A., and Patzkowsky, M.E., 2008. Evolution of calcareous nannoplankton and the recovery of marine food webs after the Cretaceous–Paleocene mass extinction. Palaios, 23(4):185–194. doi:10.2110/palo.2007.p07-004r Galeotti, S., Krishnan, S., Pagani, M., Lanci, L., Gaudio, A., Zachos, J.C., Monechi, S., Morelli, G., and Lourens, L., 2010. Orbital chronology of early Eocene hyperthermals from the Contessa Road section, central Italy. Earth Planet. Sci. Lett., 290(1–2):192–200. doi:10.1016/j.epsl.2009.12.021 Gersonde, R., Hodell, D.A., Blum, P., et al., 1999. Proc. ODP, Init. Repts., 177: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.177.1999 Gibbs, S.J., Bown, P.R., Sessa, J.A., Bralower, T.J., and Wilson, P.A., 2006. Nannoplankton extinction and origination across the Paleocene–Eocene Thermal Maximum. Science, 314(5806):1770–1773. doi:10.1126/science.1133902 Goodwin, P., Williams, R.G., Ridgwell, A., and Follows, M.J., 2009. Climate sensitivity to the carbon cycle modulated by past and future changes in ocean chemistry. Nat. Geosci., 2(2):145–150. doi:10.1038/ngeo416 Greenwood, D.R., Basinger, J.F., and Smith, R.Y., 2010. How wet was the Arctic Eocene rain forest? Estimates of precipitation from Paleogene Arctic macrofloras. Geology, 38(1):15–18. doi:10.1130/G30218.1 Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M. (Eds)., 2012. The Geological Time Scale 2012: Amsterdam (Elsevier). Griffith, E., Calhoun, M., Thomas, E., Averyt, K., Erhardt, A., Bralower, T., Lyle, M., Olivarez-Lyle, A., and Paytan, A., 2010. Export productivity and carbonate accumulation in the Pacific Basin at the transition from a greenhouse to icehouse climate (late Eocene to early Oligocene). Paleoceanography, 25(3):PA3212. doi:10.1029/2010PA001932 Haneberg, W.C., 1995. Groundwater flow and the stability of heterogeneous infinite slopes underlain by impervious substrata. In Haneberg, W.C., and Anderson, S.A. (Eds.), Clay and Shale Slope Instability. Rev. Eng. Geol., 10:63–78. Hardas, P., and Mutterlose, J., 2006. Calcareous nannofossil biostratigraphy of the Cenomanian/Turonian boundary interval of ODP Leg 207 at the Demerara Rise. In Erbacher, J., Danelian, T., and Nishi, H. (Eds.), Demerara Rise (Leg 207): Equatorial Cretaceous and Palaeogene Stratigraphy and Paleoceanography, Part I. Rev. Micropaleontol., 49(3):165–179. doi:10.1016/j.revmic.2006.04.005 Hayes, J.M., 1993. Factors controlling 13C contents of sedimentary organic compounds: principles and evidence. Mar. Geol., 113(1–2):111–125. doi:10.1016/0025-3227(93)90153-M Haywood, A.M., Ridgwell, A., Lunt, D.J., Hill, D.J., Pound, M.J., Dowsett, H.J., Dolan, A.M., Francis, J.E., and Williams, M., 2011. Are there pre-Quaternary geological analogues for a future greenhouse warming? Philos. Trans. R. Soc., A, 369(1938):933–956. doi:10.1098/rsta.2010.0317 Heinze, C., Maier-Reimer, E., Winguth, A.M.E., and Archer, D., 1999. A global oceanic sediment model for long-term climate studies. Global Biogeochem. Cycles, 13(1):221–250. doi:10.1029/98GB02812 Hemming, S.R., Broecker, W.S., Sharp, W.D., Bond, G.C., Gwiazda, R.H., McManus, J.F., Klas, M., and Hajdas, I., 1998. Provenance of Heinrich layers in Core V28-82, northeastern Atlantic: 40Ar/39Ar ages of ice-rafted hornblende, Pb isotopes in feldspar grains, and Nd-Sr-Pb isotopes in the fine sediment fraction. Earth Planet. Sci. Lett., 164(1–2):317–333. doi:10.1016/S0012-821X(98)00224-6 Higgins, J.A., and Schrag, D.P., 2006. Beyond methane: towards a theory for the Paleocene–Eocene Thermal Maximum. Earth Planet. Sci. Lett., 245(3–4):523–537. doi:10.1016/j.epsl.2006.03.009 Hildebrand, A.R., Penfield, G.T., Kring, D.A., Pilkington, M., Camargo, A.Z., Jacobsen, S.B., and Boynton, W.V., 1991. Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology, 19(9):867–871. doi:10.1130/0091-7613(1991)019<0867:CCAPCT>2.3.CO;2 Hilting, A.K., Kump, L.R., and Bralower, T.J., 2008. Variations in the oceanic vertical carbon isotope gradient and their implications for the Paleocene–Eocene biological pump. Paleoceanography, 23(3):PA3222. doi:10.1029/2007PA001458 Hohbein, M.W., Sexton, P.F., and Cartwright, J.A., 2012. Onset of North Atlantic Deep Water production coincident with inception of the Cenozoic global cooling trend. Geology, 40(3):255–258. doi:10.1130/G32461.1 Hollis, C.J., Rodgers, K.A., and Parker, R.J., 1995. Siliceous plankton bloom in the earliest Tertiary of Marlborough, New Zealand. Geology, 23(9):835–838. doi:10.1130/0091-7613(1995)023<0835:SPBITE>2.3.CO;2 Huber, B.T., 1996. Evidence for planktonic foraminifer reworking versus survivorship across the Cretaceous-Tertiary boundary at high latitudes. In Ryder, G., Fastovsky, D.E., and Gartner, S. (Eds.), The Cretaceous-Tertiary event and other catastrophes in Earth history. Spec. Pap.—Geol. Soc. Am., 307:319–334. doi:10.1130/0-8137-2307-8.319 Huber, B.T., Liu, C., Olsson, R.K., and Berggren, W.A., 1994. Comment on “The Cretaceous-Tertiary boundary transition in the Antarctic Ocean and its global implications,” by G. Keller. Mar. Micropaleontol., 24(2):91–99. doi:10.1016/0377-8398(94)90017-5 Huber, B.T., Norris, R.D., and MacLeod, K.G., 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology, 30(2):123–126. doi:10.1130/0091-7613(2002)030<0123:DSPROE>2.0.CO;2 Hull, P.M., Franks, P.J.S., and Norris, R.D., 2011. Mechanisms and models of iridium anomaly shape across the Cretaceous–Paleogene boundary. Earth Planet. Sci. Lett., 301(1–2):98–106. doi:10.1016/j.epsl.2010.10.031 Hull, P.M., and Norris, R.D., 2011. Diverse patterns of ocean export productivity change across the Cretaceous-Paleogene boundary: new insights from biogenic barium. Paleoceanography, 26(3):PA3205. doi:10.1029/2010PA002082 Hull, P.M., Norris, R.D., Bralower, T.J., and Schueth, J.D., 2011. A role for chance in marine recovery from the end-Cretaceous extinction. Nat. Geosci., 4(12):856–860. doi:10.1038/ngeo1302 Hutchinson, D.R., Poag, C.W., and Popenoe, P., 1995. Geophysical database of the east coast of the United States: southern Atlantic margin—stratigraphy and velocity from multichannel seismic profiles. Open-File Rep.—U.S. Geol. Surv., 95-27. Hyndman, R.D., and Davis, E.E., 1992. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. J. Geophys. Res., [Solid Earth], 97(B5):7025–7041. doi:10.1029/91JB03061 Innocent, C., Fagel, N., and Hillaire-Marcel, C., 2000. Sm–Nd isotope systematics in deep-sea sediments: clay-size versus coarser fractions. Mar. Geol., 168(1–4):79–87. doi:10.1016/S0025-3227(00)00052-9 Jenkyns, H.C., 2010. Geochemistry of oceanic anoxic events. Geochem., Geophys., Geosys., 11(3):Q03004. doi:10.1029/2009GC002788 Jenkyns, H.C., Matthews, A., Tsikos, H., and Erel, Y., 2007. Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian–Turonian oceanic anoxic event. Paleoceanography, 22(3):PA3208. doi:10.1029/2006PA001355 Jiang, S., Bralower, T.J., Patzkowsky, M.E., Kump, L.R., and Schueth, J.D., 2010. Geographic controls on nannoplankton extinction across the Cretaceous/Palaeogene boundary. Nat. Geosci., 3(4):280–285. doi:10.1038/ngeo775 Johnson, D.W., 1939. The Origin of Submarine Canyons: A Critical Review of Hypotheses: New York (Hafner). Junium, C.K., and Arthur, M.A., 2007. Nitrogen cycling during the Cretaceous, Cenomanian–Turonian oceanic anoxic Event II. Geochem., Geophys., Geosys., 8(3):Q03002. doi:10.1029/2006GC001328 Kamikuri, S., Moore, T.J., Jr., Ogane, K., Suzuki, N., Palike, H., and Nishi, H., in press. Radiolarian biostratigraphy from the early Eocene to early Miocene at IODP Leg 320, Sites U1331, U1332, and U1333 in the eastern equatorial Pacific Ocean. Stratigraphy. Katz, M.E., Pak, D.K., Dickens, G.R., and Miller, K.G., 1999. The source and fate of massive carbon input during the latest Paleocene thermal maximum. Science, 286(5444):1531–1533. doi:10.1126/science.286.5444.1531 Keeling, R.F., and Stephens, B.B., 2001. Antarctic sea ice and the control of Pleistocene climate instability. Paleoceanography, 16(1):112–131. doi:10.1029/2000PA000529 Keller, G., 1993. The Cretaceous-Tertiary boundary transition in the Antarctic Ocean and its global implications. Mar. Micropaleontol., 21(1–3):1–45. doi:10.1016/0377-8398(93)90010-U Kelly, D.C., Nielsen, T.M.J., McCarren, H.K., Zachos, J.C., and Röhl, U., 2010. Spatiotemporal patterns of carbonate sedimentation in the South Atlantic: implications for carbon cycling during the Paleocene–Eocene Thermal Maximum. Palaeogeogr., Palaeoclimatol., Palaeoecol., 293(1–2):30–40. doi:10.1016/j.palaeo.2010.04.027 Kent, D.V., Cramer, B.S., Lanci, L., Wang, D., Wright, J.D., and Van der Voo, R., 2003. A case for a comet impact trigger for the Paleocene/Eocene Thermal Maximum and carbon isotope excursion. Earth Planet. Sci. Lett., 211(1–2):13–26. doi:10.1016/S0012-821X(03)00188-2 Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. R. Astron. Soc., 62(3):699–718. doi:10.1111/j.1365-246X.1980.tb02601.x Koch, M.C., and Friedrich, O., 2012. Campanian–Maastrichtian intermediate to deep-water changes in the high latitudes: benthic foraminiferal evidence. Paleoceanography, 27(2):PA2209. doi:10.1029/2011PA002259 Kuroda, J., Ogawa, N.O., Tanimizu, M., Coffin, M.F., Tokuyama, H., Kitazato, H., and Ohkouchi, N., 2007. Contemporaneous massive subaerial volcanism and Late Cretaceous oceanic anoxic Event 2. Earth Planet. Sci. Lett., 256(1–2):211–223. doi:10.1016/j.epsl.2007.01.027 Kurtz, A.C., Kump, L.R., Arthur, M.A., Zachos, J.C., and Paytan, A., 2003. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography, 18:1090. doi:10.1029/2003PA000908 Kuypers, M.M.M., van Breugel, Y., Schouten, S., Erba, E., and Sinninghe Damsté, J.S., 2004. N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology, 32:853–856. doi:10.1130/G20458.1 Kvenvolden, K.A., 1993. Gas hydrates—geological perspective and global change. Rev. Geophys., 31(2):173–187. doi:10.1029/93RG00268 Larsen, H.C., Saunders, A.D., Clift, P.D., Beget, J., Wei, W., Spezzaferri, S., and ODP Leg 152 Scientific Party, 1994. Seven million years of glaciation in Greenland. Science, 264(5161):952–955. doi:10.1126/science.264.5161.952 Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., and Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys., 428(1):261–285. doi:10.1051/0004-6361:20041335 Lear, C.H., Bailey, T.R., Pearson, P.N., Coxall, H.K., and Rosenthal, Y., 2008. Cooling and ice growth across the Eocene–Oligocene transition. Geology, 36(3):251–254. doi:10.1130/G24584A.1 Lear, C.H., Elderfield, H., and Wilson, P.A., 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287(5451):269–272. doi:10.1126/science.287.5451.269 Lear, C.H., Rosenthal, Y., Coxall, H.K., and Wilson, P.A., 2004. Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle. Paleoceanography, 19(4):PA4015–PA4025. doi:10.1029/2004PA001039 Leckie, R.M., Bralower, T.J., and Cashman, R., 2002. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17(3):1041. doi:10.1029/2001PA000623 Leon-Rodriguez, L., and Dickens, G.R., 2010. Constraints on ocean acidification associated with rapid and massive carbon injections: the early Paleogene record at Ocean Drilling Program Site 1215, equatorial Pacific Ocean. Palaeogeogr., Palaeoclimatol., Palaeoecol., 298(3–4):409–420. doi:10.1016/j.palaeo.2010.10.029 Liebrand, D., Lourens, L.J., Hodell, D.A., de Boer, B., van de Wal, R.S.W., and Pälike, H., 2011. Antarctic ice sheet and oceanographic response to eccentricity forcing during the early Miocene. Clim. Past, 7(3):869–880. doi:10.5194/cp-7-869-2011 Lisiecki, L.E., and Raymo, M.E., 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1):PA1003. doi:10.1029/2004PA001071 Liu, X., and Flemings, P., 2009. Dynamic response of oceanic hydrates to sea level drop. Geophys. Res. Lett., 36(17):L17308. doi:10.1029/2009GL039821 Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S.R., Leckie, R.M., and Pearson, A., 2009. Global cooling during the Eocene-Oligocene climate transition. Science, 323(5918):1187–1190. doi:10.1126/science.1166368 Lourens, L., Hilgen, F., Shackleton, N.J., Laskar, J., and Wilson, D., 2004. The Neogene period. In Gradstein, F.M., Ogg, J.G., and Smith, A. (Eds.), A Geologic Time Scale 2004: Cambridge (Cambridge Univ. Press), 409–440. Lourens, L.J., Sluijs, A., Kroon, D., Zachos, J.C., Thomas, E., Röhl, U., Bowles, J., and Raffi, I., 2005. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature (London, U. K.), 435(7045):1083–1087. doi:10.1038/nature03814 Lyle, M., Olivarez Lyle, A., Backman, J., and Tripati, A., 2005. Biogenic sedimentation in the Eocene equatorial Pacific—the stuttering greenhouse and Eocene carbonate compensation depth. In Lyle, M., Wilson, P.A., Janecek, T.R., et al., Proc. ODP, Init. Repts., 199: College Station, TX (Ocean Drilling Program), 1–35. doi:10.2973/odp.proc.sr.199.219.2005 Lyle, M., Wilson, P.A., Janecek, T.R., et al., 2002. Proc. ODP, Init. Repts., 199: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.199.2002 MacLeod, K.G., Londoño, C.I., Martin, E.E., Jiménez Berrocoso, Á., and Basak, C., 2011. Changes in North Atlantic circulation at the end of the Cretaceous greenhouse interval. Nat. Geosci., 4(11):779–782. doi:10.1038/ngeo1284 MacLeod, K.G., Martin, E.E., and Blair, S.W., 2008. Nd isotopic excursion across Cretaceous oceanic anoxic Event 2 (Cenomanian–Turonian) in the tropical North Atlantic. Geology, 36(10):811–814. doi:10.1130/G24999A.1 Marotzke, J., and Willebrand, J., 1991. Multiple equilibria of the global thermohaline circulation, J. Phys. Oceanogr., 21(9):1372–1385. doi:10.1175/1520-0485(1991)021<1372:MEOTGT>2.0.CO;2 Martin, E.E., MacLeod, K.G., Jiménez Berrocoso, A., and Bourbon, E., 2012. Water mass circulation on Demerara Rise during the Late Cretaceous based on Nd isotopes. Earth Planet. Sci. Lett., 327–328:111–120. doi:10.1016/j.epsl.2012.01.037 Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In Farinacci, A. (Ed.), Proc. Second Planktonic Conf. Roma 1970: Rome (Ed. Tecnosci.), 2:739–785. McGowran, B., 1989. Silica burp in the Eocene ocean. Geology, 17(9):857–860. doi:10.1130/0091-7613(1989)017<0857:SBITEO>2.3.CO;2 Meinen, C.S., and Watts, D.R., 2000. Vertical structure and transport on a transect across the North Atlantic Current near 42°N: time series and mean. J. Geophys. Res., [Oceans], 105(C9):21869–21891. doi:10.1029/2000JC900097 Merico, A., Tyrrell, T., and Wilson, P.A., 2008. Eocene/Oligocene ocean deacidification linked to Antarctic glaciation by sea-level fall. Nature (London, U. K.), 452(7190):979–982. doi:10.1038/nature06853 Michel, H.V., Asaro, F., Alvarez, W., and Alvarez, L.W., 1981. Distribution of iridium and other elements near the Cretaceous/Tertiary boundary in Hole 465A: preliminary results. In Thiede, J., and Vallier, T.L., et al., Init. Repts. DSDP, 62: Washington, DC (U.S. Govt. Printing Office), 847–849. doi:10.2973/dsdp.proc.62.139.1981 Michel, H.V., Asaro, F., Alvarez, W., and Alvarez, L.W., 1985. Elemental profile of iridium and other elements near the Cretaceous/Tertiary boundary in Hole 577B. In Heath, G.R., Burckle, L.H., et al., Init. Repts. DSDP, 86: Washington, DC (U.S. Govt. Printing Office), 533–538. doi:10.2973/dsdp.proc.86.121.1985 Miller, K.G., and Fairbanks, R.G., 1985. Oligocene to Miocene carbon isotope cycles and abyssal circulation changes. In Sundquist, E.J., and Broecker, W.S. (Eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Geophys. Monogr., 32:469–486. doi:10.1029/GM032p0469 Miller, K.G., Fairbanks, R.G., and Mountain, G.S., 1987. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, 2(1):1. doi:10.1029/PA002i001p00001 Miller, K.G., Sugarman, P.J., Browning, J.V., Kominz, M.A., Hernández, J.C., Olsson, R.K., Wright, J.D., Feigenson, M.D., and Van Sickel, W., 2003. Late Cretaceous chronology of large, rapid sea-level changes: glacioeustasy during the greenhouse world. Geology, 31(7):585–588. doi:10.1130/0091-7613(2003)031<0585:LCCOLR>2.0.CO;2 Miller, K.G., Wright, J.D., and Browning, J.V., 2005. Visions of ice sheets in a greenhouse world. In de la Rocha, C.L., and Paytan, A. (Eds.), Ocean Chemistry over the Phanerozoic and its Links to Geological Processes. Mar. Geol., 217(3–4):215–231. doi:10.1016/j.margeo.2005.02.007 Miller, K.G., Wright, J.D., and Fairbanks, R.G., 1991. Unlocking the ice house: Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res., [Solid Earth], 96(B4):6829–6848. doi:10.1029/90JB02015 Moran, K., Backman, J., Brinkhuis, H., Clemens, S.C., Cronin, T., Dickens, G.R., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R.W., Kaminski, M., King, J., Koc, N., Krylov, A., Martinez, N., Matthiessen, J., McInroy, D., Moore, T.C., Onodera, J., O’Regan, M., Pälike, H., Rea, B., Rio, D., Sakamoto, T., Smith, D.C., Stein, R., St. John, K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M., Yamamoto, M., Farrell, J., Frank, M., Kubik, P., Jokat, W., and Kristoffersen, Y., 2006. The Cenozoic palaeoenvironment of the Arctic Ocean. Nature (London, U. K.), 441(7093):601–605. doi:10.1038/nature04800 Morgan, J., Warner, M., the Chicxulub Working Group, Brittan, J., Buffler, R., Carmargo, A., Christeson, G., Denton, P., Hildebrand, A., Hobbs, R., Macintyre, H., Mackenzie, G., Maguire, P., Marin, L., Nakamura, Y., Pilkington, M., Sharpton, V., Snyder, D., Suarez, G., and Trejo, A., 1997. Size and morphology of the Chicxulub impact crater. Nature (London, U. K.), 390(6659):472–476. doi:10.1038/37291 Mort, H.P., Adatte, T., Föllmi, K.B., Keller, G., Steinmann, P., Matera, V., Berner, Z., and Stüben, D., 2007. Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic Event 2. Geology, 35(6):483–486. doi:10.1130/G23475A.1 Mountain, G.S., and Miller, K.G., 1992. Seismic and geologic evidence for early Paleogene deepwater circulation in the western North Atlantic. Paleoceanography, 7(4):423–439. doi:10.1029/92PA01268 Mountain, G.S., and Tucholke, B.E., 1985. Mesozoic and Cenozoic geology of the U.S. Atlantic continental slope and rise. In Poag, C.W. (Ed.), Geologic Evolution of the United States Atlantic Margin: New York (Van Nostrand Reinhold), 293–341. Muttoni, G., and Kent, D.V., 2007. Widespread formation of cherts during the early Eocene climatic optimum. Palaeogeogr., Paleoclimatol., Palaeoecol., 253(3–4):348–362. doi:10.1016/j.palaeo.2007.06.008 National Research Council, 2011. Understanding Earth’s Deep Past: Lessons for Our Climate Future: Washington DC (National Academies Press). Norris, R.D., 1996. Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera. Paleobiology, 22(4):461–480. http://www.jstor.org/stable/2401200 Norris, R.D., 2001. Impact of K-T boundary events on marine life. In Briggs, D.E.G., and Crowther, P.R. (Eds.), Palaeobiology II: Oxford (Blackwell Science Ltd.), 229–231. doi:10.1002/9780470999295.ch49 Norris, R.D., Huber, B.T., and Self-Trail, J., 1999. Synchroneity of the K-T oceanic mass extinction and meteorite impact: Blake Nose, western North Atlantic. Geology, 27(5):419–422. doi:10.1130/0091-7613(1999)027<0419:SOTKTO>2.3.CO;2 Norris, R.D., Klaus, A., and Kroon, D., 2001a. Mid-Eocene deep water, the Late Palaeocene Thermal Maximum and continental slope mass wasting during the Cretaceous–Palaeogene impact. In Kroon, D., Norris, R.D., and Klaus, A. (Eds.), Western North Atlantic Paleogene and Cretaceous Paleoceanography. Geol. Soc. Spec. Publ., 183(1):23–48. doi:10.1144/GSL.SP.2001.183.01.02 Norris, R.D., Kroon, D., Huber, B.T., and Erbacher, J., 2001b. Cretaceous–Palaeogene ocean and climate change in the subtropical North Atlantic. In Kroon, D., Norris, R.D., and Klaus, A. (Eds.), Western North Atlantic Paleogene and Cretaceous Paleoceanography:< Geol. Soc. Spec. Publ., 183(1):1–22. doi:10.1144/GSL.SP.2001.183.01.01 Norris, R.D., Kroon, D., Klaus, A., et al., 1998. Proc. ODP, Init. Repts., 171B: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.171B.1998 Norris, R.D., and Röhl, U., 1999. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature (London, U. K.), 401(6755):775–778. doi:10.1038/44545 Norris, R.D., and Wilson, P.A., 1998. Low-latitude sea-surface temperatures for the mid-Cretaceous and the evolution of planktic foraminifera. Geology, 26(9):823–826. doi:10.1130/0091-7613(1998)026<0823:LLSSTF>2.3.CO;2 Nuñes, F., and Norris, R.D., 2006. Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period. Nature (London, U. K.), 439(7072):60–63. doi:10.1038/nature04386 Officer, C.B., and Drake, C.L., 1983. The Cretaceous–Tertiary transition. Science, 219(4591):1383–1390. doi:10.1126/science.219.4591.1383 Oppo, D.W., and Lehman, S.J., 1993. Mid-depth circulation of the subpolar North Atlantic during the Last Glacial Maximum. Science, 259(5098):1148–1152. doi:10.1126/science.259.5098.1148 Oppo, D.W., Raymo, M.E., Lohmann, G.P., Mix, A.C., Wright, J.D., and Prell, W.L., 1995. A δ13C record of upper North Atlantic Deep Water during the past 2.6 million years. Paleoceanography, 10(3):373–394. doi:10.1029/95PA00332 Pagani, M., Caldeira, K., Archer, D., and Zachos, J.C., 2006a. ATMOSPHERE: an ancient carbon mystery. Science, 314(5805):1556–1557. doi:10.1126/science.1136110 Pagani, M., Huber, M., Liu, Z., Bohaty, S.M., Henderiks, J., Sijp, W., Krishnan, S., and DeConto, R.M., 2011. The role of carbon dioxide during the onset of Antarctic glaciation. Science, 334(6060):1261–1264. doi:10.1126/science.1203909 Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Sinninghe Damsté, J.S., Dickens, G.R., and Expedition 302 Scientists, 2006b. Arctic hydrology during global warming at the Palaeocene/Eocene Thermal Maximum. Nature (London, U. K.), 443(7103):671–675. doi:10.1038/nature05043 Pagani, M., Zachos, J.C., Freeman, K.H., Tipple, B., and Bohaty, S., 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science, 309(5734):600–603. doi:10.1126/science.1110063 Pälike, H., Frazier, J., and Zachos, J.C., 2006a. Extended orbitally forced palaeoclimatic records from the equatorial Atlantic Ceara Rise. Quat. Sci. Rev., 25(23–24):3138–3149. doi:10.1016/j.quascirev.2006.02.011 Pälike, H., Laskar, J., and Shackleton, N.J., 2004. Geologic constraints of the chaotic diffusion of the solar system. Geology, 32(11)929–932. doi:10.1130/G20750.1 Pälike, H., Lyle, M.W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K., Klaus, A., Acton, G., Anderson, L., Backman, J., Baldauf, J., Beltran, C., Bohaty, S.M., Bown, P., Busch, W., Channell, J.E.T., Chun, C.O.J., Delaney, M., Dewangan, P., Dunkley Jones, T., Edgar, K.M., Evans, H., Fitch, P., Foster, G,L., Gussone, N., Hasegawa, H., Hathorne, E.C., Hayashi, H., Herrle, J.O., Holbourn, A., Hovan, S., Hyeong, K., Iijima, K., Ito, T., Kamikuri, S., Kimoto, K., Kuroda, J., Leon-Rodriguez, L., Malinverno, A., Moore, T.C., Jr., Murphy, B.H., Murphy, D.P., Nakamura, H., Ogane, K., Ohneiser, C., Richter, C., Robinson, R., Rohling, E.J., Romero, O., Sawada, K., Scher, H., Schneider, L., Sluijs, A., Takata, H., Tian, J., Tsujimoto, A., Wade, B.S., Westerhold, T., Wilkens, R., Williams, T., Wilson, P.A., Yamamoto, Y., Yamamoto, S., Yamazaki, T., and Zeebe, R.E., 2012. A new Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature (London, U. K.), 488(7413):609–614. doi:10.1038/nature11360 Pälike, H., Nishi, H., Lyle, M., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, 2010. Expedition 320/321 summary. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.320321.101.2010 Pälike, H., Norris, R.D., Herrle, J.O., Wilson, P.A., Coxall, H.K., Lear, C.H., Shackleton, N.J., Tripati, A.K., and Wade, B.S., 2006b. The heartbeat of the Oligocene climate system. Science, 314(5807):1894–1898. doi:10.1126/science.1133822 Pälike, H., and Shackleton, N.J., 2000. Constraints on astronomical parameters from the geological record for the last 25 Myr. Earth Planet. Sci. Lett., 182(1):1–14. doi:10.1016/S0012-821X(00)00229-6 Pälike, H., Shackelton, N.J., and Röhl, U., 2001. Astronomical forcing in late Eocene marine sediments. Earth Planet. Sci. Lett., 193(3–4):589–602. doi:10.1016/S0012-821X(01)00501-5 Panchuk, K., Ridgwell, A., and Kump, L.R., 2008. Sedimentary response to Paleocene–Eocene Thermal Maximum carbon release: a model-data comparison. Geology, 36(4):315–318. doi:10.1130/G24474A.1 Paul, H.A., Zachos, J.C., Flower, B.P., and Tripati, A., 2000. Orbitally induced climate and geochemical variability across the Oligocene/Miocene boundary. Paleoceanography, 15(5):471–485. doi:10.1029/1999PA000443 Pearson, P.N., Ditchfield, P.W., Singano, J., Harcourt-Brown, K.G., Nicholas, C.J., Olsson, R.K., Shackleton, N.J., and Hall, M.A., 2001. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature (London, U. K.), 413(6855):481–487. doi:10.1038/35097000 Pearson, P.N., Foster, G.L., and Wade, B.S., 2009. Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature (London, U. K.), 461(7267):1110–1113. doi:10.1038/nature08447 Pearson, P.N., McMillan, I.K., Wade, B.S., Dunkley Jones, T., Coxall, H.K., Bown, P.R., and Lear, C.H., 2008. Extinction and environmental change across the Eocene–Oligocene boundary in Tanzania. Geology, 36(2):179–182. doi:10.1130/G24308A.1 Pekar, S.F., Hucks, A., Fuller, M., and Li, S., 2005. Glacioeustatic changes in the early and middle Eocene (51–42 Ma): shallow-water stratigraphy from ODP Leg 189 Site 1171 (South Tasman Rise) and deep-sea δ18O records. Geol. Soc. Am. Bull., 117(7–8):1081–1093. doi:10.1130/B25486.1 Peterson, L.C., and Backman, J., 1990. Late Cenozoic carbonate accumulation and the history of the carbonate compensation depth in the western equatorial Indian Ocean. In Duncan, R.A., Backman, J., Peterson, L.C., et al., Proc. ODP, Sci. Results, 115: College Station, TX (Ocean Drilling Program), 467–507. doi:10.2973/odp.proc.sr.115.163.1990 Peterson, L.C., Murray, D.W., Ehrmann, W.U., and Hempel, P., 1992. Cenozoic carbonate accumulation and compensation depth changes in the Indian Ocean. In Duncan, R.A., Rea, D.K., Kidd, R.B., von Rad, U., and Weissel, J.K. (Eds.), Synthesis of Results from Scientific Drilling in the Indian Ocean. Geophys. Monogr., 70:311–333. doi:10.1029/GM070p0311 Petrizzo, M.R., 2005. An early late Paleocene event on Shatsky Rise, northwest Pacific Ocean (ODP Leg 198): evidence from planktonic foraminiferal assemblages. In Bralower, T.J., Premoli Silva, I., and Malone, M.J. (Eds.), Proc. ODP, Sci. Results, 198: College Station, TX (Ocean Drilling Program), 1–29. doi:10.2973/odp.proc.sr.198.102.2005 Pickart, R.S., McKee, T.K., Torres, D.J., and Harrington, S.A., 1999. Mean structure and interannual variability of the slopewater system south of Newfoundland. J. Phys. Oceanogr., 29(10):2541–2558. doi:10.1175/1520-0485(1999)029<2541:MSAIVO>2.0.CO;2 Pollard, D., and DeConto, R.M., 2005. Hysteresis in Cenozoic Antarctic ice-sheet variations. Global Planet. Change, 45(1–3):9 –21. doi:10.1016/j.gloplacha.2004.09.011 Pospichal, J.J., 1994. Calcareous nannofossils at the K-T boundary, El Kef: no evidence for stepwise, gradual, or sequential extinctions. Geology, 22(2):99–102. doi:10.1130/0091-7613(1994)022<0099:CNATKT>2.3.CO;2 Prins, M.A., Bouwer, L.M., Beets, C.J., Troelstra, S.R., Weltje, G.J., Kruk, R.W., Kuijpers, A., and Vroon, P.Z., 2002. Ocean circulation and iceberg discharge in the glacial North Atlantic: inferences from unmixing of sediment size distributions. Geology, 30(6):555–558. doi:10.1130/0091-7613(2002)030<0555:OCAIDI>2.0.CO;2 Quillévéré, F., Aubry, M.-P., Norris, R.D., and Berggren, W.A., 2002. Paleocene oceanography of the eastern subtropical Indian Ocean: an integrated magnetobiostratigraphic and stable isotope study of ODP Hole 761B (Wombat Plateau). Palaeogeogr., Palaeoecol., Palaeoclimatol., 184(3–4):371–405. doi:10.1016/S0031-0182(02)00275-4 Quillévéré, F., Norris, R.D., Kroon, D., and Wilson, P.A., 2008. Transient ocean warming and shifts in carbon reservoirs during the early Danian. Earth Planet. Sci. Lett., 265(3–4):600–615. doi:10.1016/j.epsl.2007.10.040 Quillévéré, F., Norris, R.D., Moussa, I., and Berggren, W.A., 2001. Role of photosymbiosis and biogeography in the diversification of early Paleogene acarininids (planktonic foraminifera). Paleobiology, 27(2):311–326. doi:10.1666/0094-8373(2001)027<0311:ROPABI>2.0.CO;2 Racki, G., and Cordey, F., 2000. Radiolarian palaeoecology and radiolarites: is the present the key to the past? Earth-Sci. Rev., 52(1–3):83–120 doi:10.1016/S0012-8252(00)00024-6 Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L., and Hilgen, F., 2006. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev., 25(23–24):3113–3137. doi:10.1016/j.quascirev.2006.07.007 Rahmstorf, S., 1995. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature (London, U. K.), 378(6553):145–149. doi:10.1038/378145a0 Ravizza, G., and Peucker-Ehrenbrink, B., 2003. Chemostratigraphic evidence of Deccan volcanism from the marine osmium isotope record. Science, 302(5649):1392–1395. doi:10.1126/science.1089209 Ridgwell, A., 2007. Interpreting transient carbonate compensation depth changes by marine sediment core modeling. Paleoceanography, 22(4):PA4102. doi:10.1029/2006PA001372 Robinson, N., Ravizza, G., Coccioni, R., Peucker-Ehrenbrink, B., and Norris, R., 2009. A high-resolution marine 187Os/188Os record for the late Maastrichtian: distinguishing the chemical fingerprints of Deccan volcanism and the KP impact event. Earth Planet. Sci. Lett., 281(3–4):159–168. doi:10.1016/j.epsl.2009.02.019 Robinson, S.A., Murphy, D.P., Vance, D., and Thomas, D.J., 2010. Formation of “Southern Component Water” in the Late Cretaceous: evidence from Nd isotopes. Geology, 38(10):871–874. doi:10.1130/G31165.1 Rona, P.A., 1969. Middle Atlantic continental slope of the United States: deposition and erosion. AAPG Bull., 53(7):1453–1465. doi:10.1306/5D25C85F-16C1-11D7-8645000102C1865D Rudnicki, M.D., Wilson, P.A., and Anderson, W.T., 2001. Numerical models of diagenesis, sediment properties, and pore fluid chemistry on a paleoceanographic transect: Blake Nose, Ocean Drilling Program Leg 171B. Paleoceanography, 16(6):563–575. doi:10.1029/2000PA000551 Ruppel, C., 1997. Anomalously cold temperatures observed at the base of the gas hydrate stability zone on the U.S. Atlantic passive margin. Geology, 25(8):699–702. doi:10.1130/0091-7613(1997)025<0699:ACTOAT>2.3.CO;2 Saffer, D., McNeill, L., Byrne, T., Araki, E., Toczko, S., Eguchi, N., Takahashi, K., and the Expedition 319 Scientists, 2010. Proc. IODP, 319: Tokyo (Integrated Ocean Drilling Program management International, Inc.). doi:10.2204/iodp.proc.319.2010 Saffer, D.M., and Bekins, B.A., 2002. Hydrologic controls on the morphology and mechanics of accretionary wedges. Geology, 30(3):271–274. doi:10.1130/0091-7613(2002)030<0271:HCOTMA>2.0.CO;2 Sageman, B.B., Meyers, S.R., and Arthur, M.A., 2006. Orbital time scale and new C isotope record for Cenomanian/Turonian boundary stratotype. Geology, 34(2):125-128. doi:10.1130/G22074.1 Sanfilippo, A., and Blome, C.D., 2001. Biostratigraphic implications of mid-latitude Paleocene–Eocene radiolarian faunas from Hole 1051A, ODP Leg 171B, Blake Nose, western North Atlantic. In Kroon, D., Norris, R.D., and Klaus, A. (Eds.), Western North Atlantic Palaeogene and Cretaceous Palaeoceanography. Geol. Soc. Spec. Publ., 183(1):l85–224. doi:10.1144/GSL.SP.2001.183.01.10 Scher, H.D., Bohaty, S.M., Zachos, J.C., and Delaney, M.L., 2011. Two-stepping into the icehouse: East Antarctic weathering during progressive ice-sheet expansion at the Eocene–Oligocene transition. Geology, 39(4):383–386. doi:10.1130/G31726.1 Schlanger, S.O., Arthur, M.A., Jenkyns, H.C., and Scholle, P.A., 1987. The Cenomanian–Turonian oceanic anoxic event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion. In Brooks, J., and Fleet, A.J. (Eds.), Marine Petroleum Source Rocks. Geol. Soc. Spec. Publ., 26(1):371–399. doi:10.1144/GSL.SP.1987.026.01.24 Schouten, S., Hopmans, E.C., Forster, A., van Breugel, Y., Kuypers, M.M.M., and Sinninghe Damsté, J.S., 2003. Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids. Geology, 31(12):1069–1072. doi:10.1130/G19876.1 Schulte, P., Alegret, L., Arenillas, I., Arz, J.A., Barton, P.J., Bown, P.R., Bralower, T.J., Christeson, G.L., Claeys, P., Cockell, C.S., Collins, G.S., Deutsch, A., Goldin, T.J., Goto, K., Grajales-Nishimura, J.M., Grieve, R.A.F., Gulick, S.P.S., Johnson, K.R., Kiessling, W., Koeberl, C., Kring, D.A., MacLeod, K.G., Matsui, T., Melosh, J., Montanari, A., Morgan, J.V., Neal, C.R., Nichols, D.J., Norris, R.D., Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M., Reimold, W.U., Robin, E., Salge, T., Speijer, R.P., Sweet, A.R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M.T., and Willumsen, P.S., 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous/Paleogene boundary. Science, 327(5970):1214–1218. doi:10.1126/science.1177265 Screaton, E., Saffer, D., Henry, P., and Hunze, S., 2002. Porosity loss within the underthrust sediments of the Nankai accretionary complex: implications for overpressures. Geology, 30(1):19–22. doi:10.1130/0091-7613(2002)030<0019:PLWTUS>2.0.CO;2 Sepkoski, J.J., Jr., Bambach, R.K., Raup, D.M., and Valentine, J.W., 1981. Phanerozoic marine diversity and the fossil record. Nature (London, U. K.), 293(5832):435–437. doi:10.1038/293435a0 Sexton, P.F., and Norris, R.D., 2008. Dispersal and biogeography of marine plankton: long-distance dispersal of the foraminifer Truncorotalia truncatulinoides. Geology, 36(11):899–902. doi:10.1130/G25232A.1 Sexton, P.F., Norris, R.D., Wilson, P.A., Pälike, H., Westerhold, T., Röhl, U., Bolton, C.T., and Gibbs, S., 2011. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon. Nature (London, U. K.), 471(7338):349–352. doi:10.1038/nature09826 Sexton, P.F., and Wilson, P.A., 2009. Preservation of benthic foraminifera and reliability of deep-sea temperature records: the importance of sedimentation rates, lithology, and the need to examine test wall structure. Paleoceanography, 24(2):PA2208. doi:10.1029/2008PA001650 Sexton, P.F., Wilson, P.A., and Norris, R.D., 2006a. Testing the Cenozoic multisite composite δ18O and δ13C curves: new monospecific Eocene records from a single locality, Demerara Rise (Ocean Drilling Program Leg 207). Paleoceanography, 21(2):PA2019. doi:10.1029/2005PA001253 Sexton, P.F., Wilson, P.A., and Pearson, P.N., 2006b. Microstructural and geochemical perspectives on planktic foraminiferal preservation: “glassy” versus “frosty.” Geochem., Geophys., Geosyst., 7:Q12P19. doi:10.1029/2006GC001291 Shackleton, N.J., Backman, J., Zimmerman, H., Kent, D.V., Hall, M.A., Roberts, D.G., Schnitker, D., Baldauf, J.G., Desprairies, A., Homrighausen, R., Huddlestun, P., Keene, J.B., Kaltenback, A.J., Krumsiek, K.A.O., Morton, A.C., Murray, J.W., and Westberg-Smith, J., 1984. Oxygen isotope calibration of the onset of ice rafting and history of glaciation in the North Atlantic region. Nature (London, U. K.), 307(5952):620–623. doi:10.1038/307620a0 Sigurdsson, H., Leckie, R.M., Acton, G.D., et al., 1997. Proc. ODP, Init. Repts., 165: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.165.1997 Simoneit, B.R.T., 1986. Cyclic terpenoids of the geosphere. In Johns, R.B. (Ed.), Biological Markers in the Sedimentary Record: Internat. Geol. Correlation Proj. 157, Amsterdam (Elsevier), 43–99. Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe Damsté, J.S., Dickens, G.R., Huber, M., Reichart, G.-J., Stein, R., Matthiessen, J., Lourens, L.J., Pedentchouk, N., Backman, J., Moran, K., and the Expedition 302 Scientists, 2006. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene Thermal Maximum. Nature (London, U. K.), 441(7093):610–613. doi:10.1038/nature04668 Stickley, C.E., St. John, K., Koç, N., Jordan, R.W., Passchier, S., Pearce, R.B., and Kearns, L.E., 2009. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris. Nature (London, U. K.), 460(7253):376–379. doi:10.1038/nature08163 Stommel, H., and Arons, A.B., 1960. On the abyssal circulation of the world ocean—I. Stationary planetary flow patterns on a sphere. Deep Sea Res., 6:140–154. doi:10.1016/0146-6313(59)90065-6 Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Eidem, T.R., and Rey, S.S., 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature (London, U. K.), 429(6991):542–545. doi:10.1038/nature02566 Terzaghi, K., 1950. Mechanism of landslides. In Paige, S. (Ed.), Application of Geology to Engineering Practice: Berkeley Volume: Baltimore (Geol. Soc. Am.), 83–123. Thomas, D.J., Bralower, T.J., and Jones, C.E., 2003. Neodymium isotopic reconstruction of late Paleocene–early Eocene thermohaline circulation. Earth Planet. Sci. Lett., 209(3–4):309–322. doi:10.1016/S0012-821X(03)00096-7 Toffanin, F., Agnini, C., Fornaciari, E., Rio, D., Giusberti, L., Luciani, V., Spofforth, D.J.A., and Pälike, H., 2011. Changes in calcareous nannofossil assemblages during the Middle Eocene Climatic Optimum: clues from the central-western Tethys (Alano section, NE Italy). Mar. Micropaleontol., 81(1–2):22–31. doi:10.1016/j.marmicro.2011.07.002 Toggweiler, J.R., and Samuels, B., 1995. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res., Part I, 42(4):477–500. doi:10.1016/0967-0637(95)00012-U Toon, O.B., Zahnle, K., Morrison, D., Turco, R.P., and Covey, C., 1997. Environmental perturbations caused by the impacts of asteroids and comets. Rev. Geophys., 35(1):41–78. doi:10.1029/96RG03038 Tripati, A., Backman, J., Elderfield, H., and Ferretti, P., 2005. Eocene bipolar glaciation associated with global carbon cycle changes. Nature (London, U. K.), 436(7049):341–346. doi:10.1038/nature03874 Tripati, A.K., Eagle, R.A., Morton, A., Dowdeswell, J.A., Atkinson, K.L., Bahé, Y., Dawber, C.F., Khadun, E., Shaw, R.M.H., Shorttle, O., and Thanabalasundaram, L., 2008. Evidence for glaciation in the northern hemisphere back to 44 Ma from ice-rafted debris in the Greenland Sea. Earth Planet. Sci. Lett., 265(1–2):112–122. doi:10.1016/j.epsl.2007.09.045 Tripati, A., and Elderfield, H., 2005. Deep-sea temperature and circulation changes at the Paleocene/Eocene Thermal Maximum. Science, 308(5730):1894–1898. doi:10.1126/science.1109202 Tsikos, H., Jenkyns, H.C., Walsworth-Bell, B., Petrizzo, M.R., Forster, A., Kolonic, S., Erba, E., Premoli Silva, I., Baas, M., Wagner, T., and Sinninghe-Damsté, J.S., 2004. Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian oceanic anoxic event: correlation and implication based on three localities. J. Geol. Soc., 161(4):711–719. doi:10.1144/0016-764903-077 Tucholke, B.E., 1979. Relationships between acoustic stratigraphy and lithostratigraphy in the western North Atlantic Basin. In Tucholke, B.E., Vogt, P.R., et al., Init. Repts. DSDP, 43: Washington, DC (U.S. Govt. Printing Office), 827–846. doi:10.2973/dsdp.proc.43.141.1979 Tucholke, B.E., and Mountain, G.S., 1986. Tertiary paleoceanography of the western North Atlantic Ocean. In Vogt, P.R., and Tucholke, B.E. (Eds.), The Geology of North America (Vol. M): The Western North Atlantic Region: Boulder (Geol. Soc. Am.), 631–650. Tucholke, B.E., and Vogt, P.R., 1979. Western North Atlantic: sedimentary evolution and aspects of tectonic history. In Tucholke, B.E., Vogt, P.R., et al., Init. Repts. DSDP, 43: Washington, DC (U.S. Govt. Printing Office), 791–825. doi:10.2973/dsdp.proc.43.140.1979 Tucholke, B.E., Vogt, P.R., et al., 1979. Init. Repts. DSDP, 43: Washington, DC (U.S. Govt. Printing Office). doi:10.2973/dsdp.proc.43.1979 Turgeon, S.C., and Creaser, R.A., 2008. Cretaceous oceanic anoxic Event 2 triggered by a massive magmatic episode. Nature (London, U. K.), 454(7202):323–326. doi:10.1038/nature07076 van Andel, T.H., 1975. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet. Sci. Lett., 26(2):187–194. doi:10.1016/0012-821X(75)90086-2 van Hinsbergen, D.J.J., Steinberger, B., Doubrovine, P.V., and Gassmöller, R., 2011. Acceleration and deceleration of India-Asia convergence since the Cretaceous: roles of mantle plumes and continental collision. J. Geophys. Res., [Solid Earth], 116(B6):B06101. doi:10.1029/2010JB008051 Via, R.K., and Thomas, D.J., 2006. Evolution of Atlantic thermohaline circulation: early Oligocene onset of deep-water production in the North Atlantic. Geology, 34(6):441–444. doi:10.1130/G22545.1 Voigt, S., Erbacher, J., Mutterlose, J., Weiss, W., Westerhold, T., Wiese, F., Wilmsen, M., and Wonik, T., 2008. The Cenomanian–Turonian of the Wunstorf section (north Germany): global stratigraphic reference section and new orbital timescale for oceanic anoxic Event 2. Newsl. Stratigr., 43(1):65–89. doi:10.1127/0078-0421/2008/0043-0065 Voigt, S., Friedrich, O., Norris, R.D., and Schönfeld, J., 2010. Campanian–Maastrichtian carbon isotope stratigraphy: shelf-ocean correlation between the European shelf sea and the tropical Pacific Ocean. Newsl. Stratigr., 44(1):57–72. doi:10.1127/0078-0421/2010/0004 Volkman, J.K., Burton, H.R., Everitt, D.A., and Allen, D.I., 1988. Pigment and lipid composition of algal and bacterial communities in Ace Lake, Vestfold Hills, Antarctica. Hydrobiologia, 165(1):41–57. doi:10.1007/BF00025573 Wade, B.S., Houben, A.J.P., Quaijtaal, W., Schouten, S., Rosenthal, Y., Miller, K.G., Katz, M.E., Wright, J.D., and Brinkhuis, H., 2012. Multiproxy record of abrupt sea-surface cooling across the Eocene–Oligocene transition in the Gulf of Mexico. Geology, 40(2):159–162. doi:10.1130/G32577.1 Wade, B.S., and Pälike, H., 2004. Oligocene climate dynamics. Paleoceanography, 19(4):PA4019. doi:10.1029/2004PA001042 Wade, B.S., Pearson, P.N., Berggren, W.A., and Pälike, H., 2011. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth-Sci. Rev., 104(1–3):111–142. doi:10.1016/j.earscirev.2010.09.003 Weltje, G.J., 1997. End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem. Math. Geol., 29(4):503–549. doi:10.1007/BF02775085 Weltje, G.J., and Prins, M.A., 2003. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics. Sediment. Geol., 162(1–2):39–62. doi:10.1016/S0037-0738(03)00235-5 Westerhold, T., and Röhl, U., 2009. High-resolution cyclostratigraphy of the early Eocene—new insights into the origin of the Cenozoic cooling trend. Clim. Past, 5(3):309–327. doi:10.5194/cp-5-309-2009 Westerhold, T., Röhl, U., Donner, B., McCarren, H.K., and Zachos, J.C., 2011. A complete high-resolution Paleocene benthic stable isotope record for the central Pacific (ODP Site 1209). Paleoceanography, 26(2):PA2216. doi:10.1029/2010PA002092 Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale, V., Bowles, J., and Evans, H.F., 2008. Astronomical calibration of the Paleocene time. Palaeogeogr., Palaeoclimatol., Palaeoecol., 257(4):377–403. doi:10.1016/j.palaeo.2007.09.016 Wilson, P.A., and Norris, R.D., 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature (London, U. K.), 412(6845):425–429. doi:10.1038/35086553 Wright, J.D., and Miller, K.G., 1993. Southern Ocean influences on late Eocene to Miocene deepwater circulation. In Kennett, J.P., and Warnke, D.A. (Eds.), The Antarctic Paleoenvironment: A Perspective on Global Change. Antarct. Res. Ser., 60:1–25. Wright, J.D., Miller, K.G., and Fairbanks, R.G., 1992. Early and middle Miocene stable isotopes: implications for deepwater circulation and climate. Paleoceanography, 7(3):357–389. doi:10.1029/92PA00760 Zachos, J.C., Dickens, G.R., and Zeebe, R.E., 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature (London, U. K.), 451(7176):279–283. doi:10.1038/nature06588 Zachos, J.C., Flower, B.P., and Paul, H., 1997. Orbitally paced climate oscillations across the Oligocene/Miocene boundary. Nature (London, U. K.), 388(6642):567–570. doi:10.1038/41528 Zachos, J.C., Kroon, D., Blum, P., et al., 2004. Proc. ODP, Init. Repts., 208: College Station, TX (Ocean Drilling Program. doi:10.2973/odp.proc.ir.208.2004 Zachos, J.C., McCarren, H., Murphy, B., Röhl, U., and Westerhold, T., 2010. Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: implications for the origin of hyperthermals. Earth Planet. Sci. Lett., 299(1–2):242–249. doi:10.1016/j.epsl.2010.09.004 Zachos, J.C., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517):686–693. doi:10.1126/science.1059412 Zachos, J.C., Röhl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L.J., McCarren, H., and Kroon, D., 2005. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science, 308(5728):1611–1615. doi:10.1126/science.1109004 Zeebe, R.E., and Zachos, J.C., 2007. Reversed deep-sea carbonate ion basin gradient during Paleocene-Eocene Thermal Maximum. Paleoceanography, 22(3):PA3201. doi:10.1029/2006PA001395 |